Math, asked by DhruvSharma728282, 5 months ago

Solve:-
\sf{\dfrac{6x+1}{3}+1=\dfrac{x - 3}{6}}

Answers

Answered by Anonymous
18

Given Equation:-

  • \sf{\dfrac{6x+1}{3}+1=\dfrac{x - 3}{6}}

Solution:-

★ Multiplying both sides of the equation by 6,

\tt\longmapsto{\dfrac{6(6x + 1)}{3}+ 6 × 1 =\dfrac{6(x - 3)}{6}}

\tt\longmapsto{2(6x + 1) + 6 = x - 3}

⠀⠀\boxed{\sf{\purple{(Opening\: the\: brackets)}}}

\large{\tt\longmapsto{12x + 2 + 6 = x - 3}}

\large{\tt\longmapsto{12x + 8 = x - 3}}

\large{\tt\longmapsto{12x - x + 8 = -3}}

\large{\tt\longmapsto{11x + 8 = -3}}

\large{\tt\longmapsto{11x = -3 - 8}}

\large{\tt\longmapsto{11x = -11}}

\large{\boxed{\tt{\longmapsto{\orange{x = -1}}}}}

Verification:-

\large{\tt{\longmapsto{L.H.S =\dfrac{6(-1)+ 1}{3}}}}

\large{\tt{\longmapsto{\dfrac{-6 + 1}{3}+ 1}}}

\large{\tt{\longmapsto{\dfrac{-5}{3} +\dfrac{3}{3}}}}

\large{\tt{\longmapsto{\dfrac{-5 + 3}{3} = \dfrac{-2}{3}}}}

\large{\tt{\longmapsto{R.H.S =\dfrac{(-1)- 3}{6} =\dfrac{-4}{6} =\dfrac{-2}{3}}}}

⠀⠀⠀⠀⠀\large{\boxed{\sf{\green{L.H.S\: =\: R.H.S}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions