Math, asked by BeArmed, 3 months ago

Solve :-
\sf \dfrac{cot \theta}{cot \theta - cot3 \theta}+\dfrac{tan\theta}{tan\theta-tan3\theta} \:
 \\  \\
For Moderators & Stars...!!​

Answers

Answered by sharanyalanka7
16

Answer:

1

Step-by-step explanation:

To Find :-

Value of :-

\dfrac{cot\theta}{cot\theta-cot3\theta}+\dfrac{tan\theta}{tan\theta-tan3\theta}

Solution :-

\dfrac{cot\theta}{cot\theta-cot3\theta}+\dfrac{tan\theta}{tan\theta-tan3\theta}

We know that :- cotA = 1\tanA

\dfrac{\dfrac{1}{tan\theta}}{\dfrac{1}{tan\theta}-\dfrac{1}{tan3\theta}} + \dfrac{tan\theta}{tan\theta-tan3\theta}

Taking L.C.M :-

\dfrac{\dfrac{1}{tan\theta}}{\dfrac{tan3\theta-tan\theta}{tan\theta(tan3\theta)}}+\dfrac{tan\theta}{tan\theta-tan3\theta}

\dfrac{1}{tan\theta}}\times{\dfrac{tan3\theta\times tan\theta}{tan3\theta-tan\theta}}+\dfrac{tan\theta}{tan\theta-tan3\theta}

Cancelling tan\theta we will get :-

\dfrac{tan3\theta}{tan3\theta-tan\theta} + \dfrac{tan\theta}{tan\theta-tan3\theta}

Taking "-" common :-

\dfrac{tan3\theta}{tan3\theta-tan\theta}+\dfrac{tan\theta}{-(tan3\theta-tan\theta)}

\dfrac{tan3\theta}{tan3\theta-tan\theta}-\dfrac{tan\theta}{tan3\theta-tan\theta}

= \dfrac{tan3\theta-tan\theta}{tan3\theta-tan\theta}

= 1

\therefore \dfrac{cot\theta}{cot\theta-cot3\theta}+\dfrac{tan\theta}{tan\theta-tan3\theta} = 1

Similar questions