Math, asked by Anonymous, 5 months ago

solve :
 \sf{ \frac{d}{dx}  \sqrt{ \sqrt{ \sqrt{ \sqrt{x} } } }}
class 11 ..maths ...
derivatives​

Answers

Answered by Anonymous
12

Answer :

\Rightarrow\mathsf{\dfrac{1}{16\:x^{\tiny{\dfrac{15}{16}}}}}

Explanation :

Refer the attached image.

Attachments:
Answered by IdyllicAurora
44

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the Concept of Rules of Derivatives has been used. We are given a function. We see that we are give roots as the function of x. So first we can simplify the term of x and then use rules of derivative to find the answer.

Let's do it !!

________________________________________________

Formula Used :-

\\\;\boxed{\sf{x^{1/2}\;=\;\bf{\sqrt{x}}}}

\\\;\boxed{\sf{(a^{m})^{n}\;=\;\bf{a^{mn}}}}

\\\;\boxed{\sf{x^{-1}\;=\;\bf{\dfrac{1}{x}}}}

\\\;\boxed{\sf{x^{n}\;=\;\bf{n\:x^{n\;-\;1}}}}

This is the Power Rule of Derivatives.

________________________________________________

Solution :-

Given,

\\\;\large{\sf{\mapsto\;\;\dfrac{d}{dx}\;\sqrt{\;\sqrt{\;\sqrt{\;\sqrt{\;x\;}}}}}}

Firstly we need to simplify the value of x.

________________________________________________

~ For simplification of x ::

\\\;\;\sf{\rightarrow\;\;\dfrac{d}{dx}\;\sqrt{\;\sqrt{\;\sqrt{\;\sqrt{\;x\;}}}}}

Now using the First formula of exponents, we get,

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;\sqrt{\;\sqrt{\;\sqrt{\;(x^{1/2})\;}}}}

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;\sqrt{\;\sqrt{\;(x^{1/2})^{1/2})\;}}}

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;\sqrt{\;(x^{1/2})^{1/2})^{1/2}\;}}

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;(x^{1/2})^{1/2})^{1/2})^{1/2}}

Now after multiplying all these exponents, we get, and using the Second formula of exponents,

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;(x^{1/2})^{1/2})^{1/4}}

\\\;\;\bf{\Rightarrow\;\;\dfrac{d}{dx}\;(x^{1/2})^{1/8}}

\\\;\;\underline{\underline{\bf{\Rightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)}}}

________________________________________________

~ For the Derivative of the Function ::

\\\;\;\sf{\mapsto\;\;\dfrac{d}{dx}\;\sqrt{\;\sqrt{\;\sqrt{\;\sqrt{\;x\;}}}}}

\\\;\;\bf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)}

Now using the Power Rule of Derivatives, we get,

\\\;\;\sf{:\rightarrow\;\;x^{n}\;=\;\bf{n\:x^{n\;-\;1}}}

\\\;\;\sf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16}\;x^{\bigg(\dfrac{1}{16}\;-\;1\bigg)}}}

\\\;\;\sf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16}\;x^{\bigg(\dfrac{1\;-\;16}{16}\bigg)}}}

\\\;\;\sf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16}\;x^{-15/16}}}

Now using Third Formula of Exponents, we get,

\\\;\;\sf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16}\;\times\;\bigg(\dfrac{1}{x}\bigg)^{15/16}}}

\\\;\;\sf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16\;\times\;x^{15/16}}}}

Hence,

\\\;\;\underline{\underline{\bf{\Longrightarrow\;\;\dfrac{d}{dx}\;\bigg(x^{1/16}\bigg)\;\;=\;\bf{\dfrac{1}{16\;\;x^{15/16}}\;\;or\;\;\dfrac{1}{16\;\;\sqrt[16]{x^{15}}}}}}}

\\\;\underline{\boxed{\tt{Thus,\;\;derivative\;\;of\;\;function\;=\;\bf{\dfrac{1}{16\;\;x^{15/16}}}}}}

________________________________________________

More to know :-

\\\;\sf{\leadsto\;\;fg\;=\;fg'\;+\;f'g}

This is the Product Rule of derivatives.

\\\;\sf{\leadsto\;\;f\;+\;g\;=\;f'\;+\;g'}

This is the Sum Rule of derivatives.

\\\;\sf{\leadsto\;\;f\;-\;g\;=\;f'\;-\;g'}

This is the Difference Rule of derivatives.

\\\;\sf{\leadsto\;\;\dfrac{f}{g}\;=\;\dfrac{(f'g\;-\;g'h)}{g^{2}}}

This is the Quotient Rule of derivatives.

\\\;\;\sf{\leadsto\;\;\dfrac{1}{f}\;=\;\dfrac{-f'}{f^{2}}}

This is the Reciprocal Rule of derivatives.

\\\;\;\sf{\leadsto\;\;\dfrac{dy}{dx}\;=\;\dfrac{dy}{du}\;\dfrac{du}{dx}}

This is the Chain Rule of derivatives.

Similar questions