Math, asked by Anonymous, 2 months ago

Solve
 \sf \:  \sqrt{(1 - cos  {}^{2} \theta) sec{}^{2}  \theta } =  \tan( \theta)

Answers

Answered by kailashmannem
37

 \sf \sqrt{(1 \: - \: cos^2 ∅) sec^2 ∅} \: = \: tan ∅

  • Taking LHS,

 \sf \sqrt{(1 \: - \: cos^2 ∅) sec^2 ∅}

  • We know that,

sin² ∅ + cos² ∅ = 1

  • Rearranging,

sin² ∅ = 1 - cos² ∅

  • Substituting the values,

 \sf \sqrt{sin^2 ∅ \: * \: sec^2 ∅}

 \sf sin ∅ \: * \: sec ∅

  • We know that,

 \sf sec ∅ \: = \: \dfrac{1}{cos ∅}

  • Substituting the values,

 \sf sin ∅ \: * \: \dfrac{1}{cos ∅}

 \sf \dfrac{sin ∅}{cos ∅}

  • We know that,

 \sf \dfrac{sin ∅}{cos ∅} \: = \: tan ∅

 \sf = \: tan ∅

  • LHS = RHS

  • Hence, proved.
Answered by TheDiamondBoyy
88

\sf\underline\pink{Question}\\

To Proof:-

  •  \sf \sqrt{(1 \: - \: cos^2 ∅) sec^2 ∅} \: = \: tan ∅\\

\sf\underline\purple{step-by-step\:solution}\\

Using Formula:

  • (1) sin² ∅ + cos² ∅ = 1

  • (2)  \sf sec ∅ \: = \: \dfrac{1}{cos ∅}

  • (3)  \sf \dfrac{sin ∅}{cos ∅} \: = \: tan ∅

Taking LHS,

\implies \sf \sqrt{(1 \: - \: cos^2 ∅) sec^2 ∅}

Rearranging formula in terms of Sin ∅

sin² ∅ = 1 - cos² ∅

Substituting the values in formula (1):

\implies \sf \sqrt{sin^2 ∅ \: * \: sec^2 ∅}

 \implies\sf sin ∅ \: * \: sec ∅

Substituting the values in formula (2):

 \implies\sf sin ∅ \: * \: \dfrac{1}{cos ∅}

 \implies\sf \dfrac{sin ∅}{cos ∅}

By formula (3)

 \sf = \: tan ∅

L.H.S = R.H.S

Hence, proved!!

Similar questions