Math, asked by Anonymous, 17 days ago

Solve:
 \sf  \sqrt{ \dfrac{44 \times 4}{ \sin  =  \theta} }
Or
  \sf \dfrac{ \sqrt{44} }{ \sqrt{8888} }  \times 3449
Solve any one of these​

Answers

Answered by itzmedipayan2
30

Answer:

Hi young brother!

 \huge \dashrightarrow \sf {\blue {\underline \red{question}}}

 \sf \dfrac{ \sqrt{44} }{ \sqrt{8888} } \times 3449

  \green{\boxed{  \huge\sf \red{ anwser}}}  \huge\downarrow

 \sf \: cancel \:  \frac{ \sqrt{44} }{ \sqrt{8888} }  \\  \\  =  \frac{1}{ \sqrt{202} }

 =  \frac{1}{ \sqrt{202} }  \times 3449

Now convert 3449 to fraction

 =  \frac{3449}{1}  \\

 =  \frac{1}{ \sqrt{202} }  \times  \frac{3449}{1}  \\  \\  =  \frac{1 \times 3449}{ \sqrt{202} \times 1 }  \\  \\  =  \frac{3449}{ \sqrt{202}  }

Hope it helps you from my side

:)

Answered by satyavarapusamantha
2

Answer:

REFER TO THE ATTACHMENT PLEASE

a²+b²+c²=10

a²+b²+c²=10squaring both sides

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100=> a + b + c = 50

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100=> a + b + c = 50Learn More:

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100=> a + b + c = 50Learn More:a³ + b³ + c³-3abc = (a + b + c)(a + b² + c²-ab- bc - ca).

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100=> a + b + c = 50Learn More:a³ + b³ + c³-3abc = (a + b + c)(a + b² + c²-ab- bc - ca).brainly.in/question/1195178

a²+b²+c²=10squaring both sides=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100=> a+b+c² + 2(25) = 100=> a+b+c4 +50= 100=> a + b + c = 50Learn More:a³ + b³ + c³-3abc = (a + b + c)(a + b² + c²-ab- bc - ca).brainly.in/question/1195178If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3-36 find value of abc ...

Attachments:
Similar questions