Math, asked by anushkanair1729, 2 months ago


solve:
 \sqrt{2 -  \sqrt{3} }   \div  \sqrt{2 +  \sqrt{3} }

Answers

Answered by ashounak
1

Answer:

2 -  \sqrt{3}

Step-by-step explanation:

 \frac{ \sqrt{2 -  \sqrt{3} } }{ \sqrt{2 +  \sqrt{3} } }  \\  =  \sqrt{ \frac{2  -  \sqrt{3} }{2 +  \sqrt{ 3} } }  \\  =  \sqrt{ \frac{ {(2 -  \sqrt{3} )}^{2} }{(2 -  \sqrt{3} ) (2 +  \sqrt{3} )} }  \\  =  \sqrt{ \frac{ {(2 -  \sqrt{3}) }^{2} }{ 4 - 3 } }  \\  =  \sqrt{ \frac{ {(2 -  \sqrt{3}) }^{2} }{1} }  \\  =  \sqrt{ {(2 -  \sqrt{3}) }^{2} }  \\  = 2 -  \sqrt{3}

Pls mark branliest.

Similar questions