Math, asked by iqbal1570, 10 months ago

Solve:
 \sqrt{2x - 1}  -  \sqrt{x - 4}  = 2 \

Answers

Answered by Sharad001
110

Question :-

Solve it :

 \mapsto \sf\sqrt{2x - 1} - \sqrt{x - 4} = 2 \: \\

Answer :-

\to \boxed{ \sf x = 5 \:   ,13 \: } \:

Solution :-

We have ,

 \to \sf\sqrt{2x - 1} - \sqrt{x - 4} = 2 \:  \\

We can write it :

 \to \sf \: \sqrt{2x - 1}  = 2  +  \sqrt{x - 4}  \\  \\ \sf \red{ squaring \: on \: both \: sides \: } \\  \\  \to \sf {( \sqrt{2x - 1} )}^{2}  =  {(2  +  \sqrt{x - 4}) }^{2}  \\  \\  \green{ \boxed{ \red{ \because }\sf  {(a + b)}^{2}  =  \orange{ {a}^{2}  +  {b}^{2}  }+ 2ab}} \\  \\  \to \sf2x - 1 =  {2}^{2}  +  {( \sqrt{x - 4} )}^{2}  + 2 \times 2 \sqrt{x - 4}  \\  \\  \to \sf \: 2x - 1 = 4 + x - 4 + 4 \sqrt{x - 4}  \\  \\  \to \sf \: 2x - 1 - x = 4 \sqrt{x - 4}  \\  \\  \to \sf \: x - 1 = 4 \sqrt{x - 4}  \\  \\ \sf \red{ again \: squaring} \:  \green{on \: both \: sides \:} \\  \\  \to \sf {(x - 1)}^{2}  =  {(4 \sqrt{x - 4} )}^{2}  \\  \\  \to \sf {x}^{2}  + 1 - 2x = 16(x - 4) \\  \\  \to \sf {x}^{2}  - 2x + 1 - 16x + 64 = 0 \\  \\ \to \sf  {x}^{2}  - 18x + 65 = 0

Split the middle term :

 \to \sf {x}^{2}  - 13x - 5x + 65 = 0 \\  \\  \to \sf \:  x(x - 13) - 5(x - 13) = 0 \\  \\  \to \sf \: (x - 13)(x - 5) = 0 \\  \\  \star \bf \underline{  \: case \: (1) }\: if \:  \\  \\  \to \sf \: x - 13 = 0 \\  \\  \to \boxed{ \sf x = 13} \\  \\  \star \:  \bf \underline{case \: (2)} \: if \:  \\  \\  \to \sf x - 5 = 0 \\  \\  \to \boxed{ \sf x = 5}

hence x = 5 ,13

Similar questions