Math, asked by vaishaIi, 9 months ago

SOLVE:-
 \tan ^{ - 1} 2x +  \tan ^{ - 1} 3x =  \frac{x}{4} \  \textless \ br /\  \textgreater \
Unnecessary answers will be reported...​

Answers

Answered by RvChaudharY50
10

Correct Question :-

  • if tan⁻¹2x + tan⁻¹3x = π/4 .. Solve for x ?

Formula used :-

  • tan⁻¹A + tan⁻¹B = tan⁻¹ [ (A + B) / ( 1 - AB) ]
  • tan(π/4) = 1.

Solution :-

→ tan⁻¹2x + tan⁻¹3x = π/4

Using above formula in LHS,

tan⁻¹ [ (2x + 3x) / ( 1 - 2x*3x) ] = π/4

→ [ 5x / (1 - 6x²) ] = tan(π/4) = 1

→ 1 - 6x² = 5x

→ 6x² + 5x - 1 = 0

Splitting The Middle Term now,

6x² + 6x - x - 1 = 0

→ 6x(x +1) - 1(x + 1) = 0

→ (x + 1)(6x - 1) = 0

Putting both Equal to Zero now,

x + 1 = 0

→ x = (-1) .

Or,

(6x - 1) = 0

→ 6x = 1

→ x = (1/6) .

Hence, value of x is (-1) & (1/6).

Answered by BrainlyPopularman
13

{ \bold{ \boxed{ \boxed{ \mathtt{  \red{\bigstar \: ANSWER \: \bigstar}}}}}}

{ \bold{ \underline{Given \: function} : -  }} \\  \\ { \bold{ \orange{  : \implies \:  {tan}^{ - 1} (2x) +  {tan}^{ - 1}(3x) =  \frac{\pi}{4}  }}} \\  \\  { \bold{ \orange{  : \implies \:  {tan}^{ - 1} ( \frac{2x + 3x}{1 - (2x)(3x)}) =  \frac{\pi}{4}  }}} \\  \\  { \bold{ \orange{  : \implies \:  {tan}^{ - 1} ( \frac{5x}{1 - 6 {x}^{2} })  =  \frac{\pi}{4} }}} \\  \\  { \bold{ \orange{  : \implies \:  \frac{5x}{1 - 6 {x}^{2} } =  \tan( \frac{\pi}{4} )  }}} \\  \\  { \bold{ \orange{  : \implies \:  \frac{5x}{1 - 6 {x}^{2}  } = 1 }}} \\  \\  { \bold{ \orange{  : \implies \: 1 - 6 {x}^{2} = 5x }}} \\  \\  { \bold{ \orange{  : \implies \: 6 {x}^{2} + 5x - 1 = 0 }}} \\  \\  { \bold{ \orange{  : \implies \: 6 {x}^{2}  + 6x - x - 1 = 0}}} \\  \\  { \bold{ \orange{  : \implies \: 6x(x + 1) - 1(x + 1) = 0}}} \\  \\  { \bold{ \orange{  : \implies \: (6x - 1)(x + 1) = 0}}} \\  \\  { \bold{  \orange{  : \implies \boxed{ \: x =  - 1 \:,\: x =  \frac{1}{6} }}}}

{ \bold{ \mathtt{  \green{\underline{ {used \:  \: formula} } :  - }}}} \\  \\ { \bold{ \pink{(1) \:  {tan}^{ - 1}(x) +  {tan}^{ - 1}  (y) = {tan}^{ - 1}  ( \frac{x + y}{1 - xy}) }}} \\  \\ { \bold{ \pink{(2) \:  \tan( \frac{\pi}{4} ) = 1 }}}

Similar questions