Math, asked by IamSameerhii, 3 months ago

✧ Solve :-
 \\ ➣ \:  \:  \tt 3 -  \frac{x}{4}  < 2x - 9 < 12 -  \frac{x}{2}, x \in \: Z {}^{ + }  \\
✰ No spamming.
✰ Needs full explanation.
✰ Spam Answer ➠ Deleted.

❍ Only for mods/stars.

Answers

Answered by TheBrainlyStar00001
65

TopicInequalities.

\\\\

Your Question :-

  •  \\ ➣ \: \: \tt 3 - \frac{x}{4} < 2x - 9 < 12 - \frac{x}{2}, x \in \: Z {}^{ + } \\

\\\\

EXPLANATION :-

\\

  Taking up the two inequalities seperately, we get :

\\

ㅤㅤㅤㅤㅤㅤㅤㅤCase 1.

\\

 :  \implies \bf \: 3 -  \frac{x}{4} < 2x - 9  \\

 :  \implies \tt \:12 -  \frac{x}{4} < 2x   \\

 :  \implies \tt \: 12 < 2x +  \frac{x}{4}  \\

 :  \implies \tt \:12 <  \frac{9x}{4}   \\

 :  \implies \tt \:   \frac{48}{9}  < x\\

✰\:\: \underline{\boxed{ ➥ \tt \: 5 \frac{1}{3}< x}}  \\

\\

.°. Solution set of 3-(x/4) < 2x - 9 is A {6,7,8,9,...}.

\\\\

ㅤㅤㅤㅤㅤㅤㅤㅤCase 2.

\\

  :  \implies \bf \:  2x - 9 &lt; 12 -  \frac{x}{2} \\

 :  \implies \tt \:2x &lt; 21 -  \frac{x}{2}   \\

 :  \implies \tt \:  2x +  \frac{x}{2} &lt; 21 \\

 :  \implies \tt \:  \frac{5x}{2} &lt; 21  \\

 :  \implies \tt \: 5x &lt; 42 \\

 :  \implies \tt \: x &lt;  \frac{42}{5}  \\

✰\:\: \underline{\boxed{➥ \tt \: x &lt; 8 \frac{2}{5}}}  \\

\\

.°. Solution set of 2x - 9 < 12 - (x/2) is B ➠ {1,2,3,4,5,6,7,8}.

\\\\

.°. Hence, the solution set for both the given inequations together A ∩ B {6,7,8}.

\\\\

Another Question Related to it :-

\\

https://brainly.in/question/20143998?utm_source=android&utm_medium=share&utm_campaign=question

\\\\

✯ Hope it helps u ✯

Similar questions