Math, asked by indranignblr, 7 months ago

solve
 {x}^{2}  - ( \sqrt{2}  + 1)x +  \sqrt{2}  = 0
by completing the square​

Answers

Answered by BrainlyPopularman
29

GIVEN :

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \sqrt{2} = 0 \\

TO FIND :

Roots of equation by completing perfect square ?

SOLUTION :

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \sqrt{2} = 0 \\

• We should write this as –

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \sqrt{2} + \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} - \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} = 0 \\

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} +  \sqrt{2}  - \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} = 0 \\

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} +  \sqrt{2}  - \bigg( \dfrac{2+1 + 2 \sqrt{2} }{4}\bigg) = 0 \\

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} +  \sqrt{2}  - \bigg( \dfrac{ 3+ 2 \sqrt{2} }{4}\bigg) = 0 \\

 \\\implies\rm{x}^{2} - ( \sqrt{2} + 1)x + \bigg( \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2} +  \dfrac{1}{ \sqrt{2} } - \dfrac{3}{4} = 0 \\

• Using identity –

 \\\longrightarrow \:  \: \rm{a}^{2} -2ab+ {b}^{2} =  {(a - b)}^{2} \\

• So that –

 \\\implies\rm\bigg(x  - \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2}  =  \dfrac{3}{4} -  \dfrac{1}{ \sqrt{2} }\\

 \\\implies\rm\bigg(x  - \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2}  =  \dfrac{3}{4} -  \dfrac{2 \sqrt{2} }{4}\\

 \\\implies\rm\bigg(x  - \dfrac{ \sqrt{2} + 1}{2}\bigg)^{2}  =  \dfrac{3 - 2 \sqrt{2} }{4}\\

 \\\implies\rm x  - \dfrac{ \sqrt{2} + 1}{2}  =  \sqrt{ \dfrac{3 - 2 \sqrt{2} }{4}}\\

 \\\implies\rm x  - \dfrac{ \sqrt{2} + 1}{2}  =  \pm \dfrac{ \sqrt{3 - 2 \sqrt{2}}}{2}\\

 \\\implies\rm x  = \dfrac{ \sqrt{2} + 1}{2} \pm \dfrac{ \sqrt{3 - 2 \sqrt{2}}}{2}\\

 \\ \large\implies{ \boxed{\rm x  = \dfrac{(\sqrt{2} + 1) \pm(\sqrt{3 - 2 \sqrt{2}})}{2}}}\\

• Hence , The roots are  \rm  \dfrac{(\sqrt{2} + 1)+(\sqrt{3 - 2 \sqrt{2}})}{2}\:\: and\:\: \dfrac{(\sqrt{2} + 1)-(\sqrt{3 - 2 \sqrt{2}})}{2}

Answered by Anonymous
530

Method 1

Given :

x²-(√2+1)x +√2 = 0

To Find :

  • by completing the square

Solution :

Factors of +√2 are -√2 and -1.

So x²-(√2+1)x +√2 = 0 can be written as:

x² -√2x -x +√2 = 0

x (x -√2) -1 (x -√2) = 0

(x - 1) (x -√2) = 0

So the factors are (x - 1) and (x -√2).

If x - 1 = 0, then x = +1

If x -√2 = 0, then x = +√2

Hence solved.

X = 1, √2

___________________

Method 2

Given :

  • a = 1 , b= -(√2+1) and c= √2

To Find

  • by completing the square

Solution :

D = b²- 4ac

Substitute all values :

= ( - 2 - 1 - 2√2) - 4 × 1 ×√2

= (- 3 - 2√2) - 4√2

= - 3 - 2√2 - 4√2

= - 3 - 6√2

= - 3(1 + 2√2)

x = - b ± √D / 2a

Substitute values :

= (√2 + 1) ± √- 3(1 + 2√2) /2

Similar questions