Math, asked by shobhitchola1, 2 months ago

Solve:
√(x-5) - √(9- x) > 1

Answers

Answered by ananya1982
0

Hope it's helpful to you

Attachments:
Answered by mathdude500
3

\rm :\longmapsto\: \sqrt{x - 5}  -  \sqrt{9 - x}  > 1

Let first define the domain of the given inequality,

\rm :\longmapsto\:x - 5 \geqslant 0 \:  \: and \: 9 - x \geqslant 0

\rm :\implies\:x \geqslant 5 \:  \: and \:  \: x \leqslant 9

\bf\implies \:x \in \: [5,  \: 9]

Now,

\rm :\longmapsto\: \sqrt{x - 5}  -  \sqrt{9 - x}  > 1

\rm :\longmapsto\: \sqrt{x - 5}  >  \sqrt{9 - x}   +  1

On squaring both sides, we get

\rm :\longmapsto\:x - 5  >  1 + 9 - x + 2 \sqrt{9 - x}

\rm :\longmapsto\:x - 5 >10  - x + 2 \sqrt{9 - x}

\rm :\longmapsto\:x - 5  - 10   + x  >  2 \sqrt{9 - x}

\rm :\longmapsto\:2x - 15   >  2 \sqrt{9 - x}

On squaring both sides, we get

\rm :\longmapsto\: {4x}^{2} + 225 - 60x > 4(9 - x)

\rm :\longmapsto\: {4x}^{2} + 225 - 60x > 36 - 4x

\rm :\longmapsto\: {4x}^{2} - 56x  + 189 > 0

Please onwards find the attachment.

Attachments:
Similar questions