Math, asked by Anonymous, 2 months ago

Solve:—
x =  \frac{3  \sqrt{2}  }{  \sqrt{6} -  \sqrt{3}   }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  -  \frac{ 6}{ \sqrt{8}  -  \sqrt{12}  }

Answers

Answered by ItZzKhushi
1

{\huge{\underbrace{\overbrace{\color{aqua} {Question}}}}}

Solve:—</p><p>x = \frac{3 \sqrt{2} }{ \sqrt{6} - \sqrt{3} } - \frac{4 \sqrt{3} }{ \sqrt{6} - \sqrt{2} } - \frac{ 6}{ \sqrt{8} - \sqrt{12} }

\huge \color{pink}{Answer:—}

⇒\frac{3 \sqrt{2} }{ \sqrt{6}  -  \sqrt{3} }  \times   \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6}  +  \sqrt{3} }  \\  \\  =  \frac{ \cancel6 \sqrt{3} + \cancel3 \sqrt{6}   }{ \cancel3} \\  \\  = 2 \sqrt{3}  +  \sqrt{6}

⇒ \frac{4 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  \times  \frac{ \sqrt{6} +  \sqrt{2}  }{ \sqrt{6} +  \sqrt{2}  }  \\  \\  =  \frac{ \cancel{12} \sqrt{2 }  +  \cancel4 \sqrt{6} }{ \cancel4}   \\  \\ = 3 \sqrt{2}  +  \sqrt{6}

⇒ \frac{6}{ \sqrt{8}  -  \sqrt{12} }  \times  \frac{ \sqrt{8}  +  \sqrt{12} }{ \sqrt{8}  +  \sqrt{12} } \\  \\  =   - 3 \sqrt{2}   - 3 \sqrt{3}  \\  \\  =  -[3 \sqrt{2}  + 3 \sqrt{3}]

⇒ \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  -  \frac{6}{ \sqrt{8} -  \sqrt{2}  }

⇒2 \sqrt{3}  +   \cancel{\sqrt{6} } -  \cancel{3 \sqrt{2}}  -  \cancel{ \sqrt{6}}  +  \cancel{3 \sqrt{2}  }+ 3 \sqrt{3}

⇒2 \sqrt{3}  + 3 \sqrt{3}

⇒5 \sqrt{3}

Answered by ItZzMissKhushi
1

Hope this answer helps you

Attachments:
Similar questions