Math, asked by sahanagh58, 1 year ago

Solve: y'=\frac{6 x^{2}-5xy-2 y^{2}}{6x^{2}-8xy+y^{2}}

Answers

Answered by anu9222
0
Hope it helps you
plz Mark it as a brainliest answer
Attachments:
Answered by jitumahi89
0

Answer:

6x^{2} y-8xy^{2} +\frac{y^{3} }{3} = 2x^{3} - 5y\frac{x^{2} }{2} -2y^{2}x

Step-by-step explanation:

y'=\frac{6x^{2}-5xy-2y^{2} }{6x^{2}-8xy+y^{2} }

since,

\frac{dy}{dx} = \frac{6x^{2}-5xy-2y^{2}}{6x^{2}-8xy+y^{2} }

So,

({6x^{2}-5xy-2y^{2} }) \, dx = ({6x^{2}-8xy+y^{2} }) \, dy

integrating both side we get ,

\int({6x^{2}-5xy-2y^{2} }) \, dx = \int({6x^{2}-8xy+y^{2} }) \, dy

After integrating both sides  we get ,

6\frac{x^{3} }{3} - 5y\frac{x^{2} }{2} -2y^{2}x=6x^{2} y-8xy^{2} +\frac{y^{3} }{3}

 2x^{3} - 5y\frac{x^{2} }{2} -2y^{2}x = 6x^{2} y-8xy^{2} +\frac{y^{3} }{3}

Similar questions