Math, asked by akshatkhurania, 11 months ago

Solve th equation -
25 {x}^{2}- 30x + 11 = 0
by using the general expression for the roots of a quadratic equation and showw that the roots are complex conjugate


Answers

Answered by mysticd
3

 Given \: quadratic \: equation : \\25x^{2} - 30x + 11 = 0

 Compare \: this \: with \: ax^{2}+bx+c=0 ,we\:get

 a = 25 , b = -30, c  = 11

 Discreminant (D) = b^{2} - 4ac \\= (-30)^{2} - 4 \times 25 \times 11 \\= 900 - 1100 \\= - 200

 D < 0 \\\blue {( Roots \:are\: complex \: conjugate) }

 \underline { \pink {Using \: Quadratic \: formula :}}

\boxed { \orange { x = \frac{-b±\sqrt{D}}{2a}}}

 = \frac{-(-30)±\sqrt{-200}}{2\times 25}

 = \frac{30±\sqrt{100\times 2 \times i^{2}}}{50}\\= \frac{30±10i\sqrt{2}}{50}\\= \frac{10(3±\sqrt{2}i)}{50}\\ = 3±\sqrt{2}i

Therefore.,

 \green { complex \: conjugate \: roots \:are }

 \green {(3+\sqrt{2}i),(3-\sqrt{2}i) }

•••♪

Similar questions