Math, asked by harshvatipawar, 5 hours ago

solve tha following quadratic equation by comparing the square method
6 x{}^{2}  + x = 2

Answers

Answered by Sarvantec
530

 \red{\dag} Given :-

 \sf{6 {x}^{2}  + x = 2}

 \green{\dag} Solution :-

 \sf{6 {x}^{2}  + x = 2}

 :\implies \sf{6x^{2}+x-2=0 }

 \sf{ : \implies \left(6x^{2}-3x\right)+\left(4x-2\right)  } \:

 \sf{ :  \implies 3x\left(2x-1\right)+2\left(2x-1\right)  } \:

 \sf{ : \implies \left(2x-1\right)\left(3x+2\right)  } \:

 \bf \red{ : \implies x=\frac{1}{2} } \\   \bf \red{And, \:  \: \bf{   x=-\frac{2}{3}  } \: }

 \\  \\

 \fbox{\mathfrak{@ItzPhantom}}

Answered by aadikumarvats
70

Step-by-step explanation:

Given:-

6x*2 + x =2

Solution:-

6x*2 + x =2

: 6x*2 + x - 2 =0

: (6x*2 - 3x) + (4x - 2)

: 3x(2x-1) + 2(2x - 1)

: (2x - 1) (3x + 2)

: x = 1/2

And, x = -2/3.

PLEASE MARK ME AS BRAINLIEST.

Similar questions