Math, asked by Anonymous, 9 months ago

Solve That

1+sec A/Sec A = sin^2 A/1-cos A​

Answers

Answered by Anonymous
0

\huge\boxed{Answer}

(1 + SecA)/SecA

(1/SecA) + (SecA/SecA)

CosA + 1

1 + CosA

From rationalisation

(1 + CosA) × (1 - CosA)/(1 - CosA)

(1 - Cos²A)/(1 - CosA)

Sin²A/(1 - CosA)

Answered by FehlingSolution
15

 \frac{1 +  \sec(a) }{ \sec(a) }

 =  >  \frac{1}{ \sec(a) }  +  \frac{ \sec(a) }{ \sec(a) }

 =  >  \cos(a)  + 1

multiplying by 1-cos(A)/1-cos(A)

 \frac{(1 +  \cos(a) )(1 - \cos(a))  }{1 -  \cos(a) }

 \frac{1 -  {cos}^{2} (a)}{1 -  \cos(a) }

 \frac{ {sin}^{2} (a)}{1 -  \cos(a) }

Similar questions