Math, asked by lakshayputta19, 1 year ago

Solve that prove that question only

Attachments:

Answers

Answered by venkatrr2004ovss6a
1

Hope it helps....

Pls mark this as brainliest

Attachments:
Answered by jaslynshawn
1

to prove: [(sinA/1-cosA)-(1-cosA/sinA)] [(cosA/1-sinA)-(1-sinA/cosA] = 4

proof:

LHS

taking LCM

= [(sin²A-(1-cosA)²)/(1-cosA)sinA] [(cos²A-(1-sinA)²)/(1-sinA)cosA]

= [(sin²A-(1+cos²A-2cosA)/(1-cosA)sinA] [cos²A-(1+sin²A-2sinA)/(1-sinA)cosA]

= [(sin²A-1-cos²A+2cosA)/(1-cosA)sinA] [(cos²A-1-sin²A+2sinA)/(1-sinA)cosA]

= [(-2cos²A+2cosA)/(1-cosA)sinA] [(-2sin²A+sinA)/(1-sinA)cosA]

taking 2cosA and 2sinA as common

= [(-2cosA(1-cosA)/(1-cosA)sinA] [(-2sinA(1-sinA)/(1-sinA)cosA]

= [-2cosA/sinA][-2sinA/cosA]

= -2×-2 = 4

hence LHS = RHS

Similar questions