Solve that prove that question only
Attachments:
Answers
Answered by
1
Hope it helps....
Pls mark this as brainliest
Attachments:
Answered by
1
to prove: [(sinA/1-cosA)-(1-cosA/sinA)] [(cosA/1-sinA)-(1-sinA/cosA] = 4
proof:
LHS
taking LCM
= [(sin²A-(1-cosA)²)/(1-cosA)sinA] [(cos²A-(1-sinA)²)/(1-sinA)cosA]
= [(sin²A-(1+cos²A-2cosA)/(1-cosA)sinA] [cos²A-(1+sin²A-2sinA)/(1-sinA)cosA]
= [(sin²A-1-cos²A+2cosA)/(1-cosA)sinA] [(cos²A-1-sin²A+2sinA)/(1-sinA)cosA]
= [(-2cos²A+2cosA)/(1-cosA)sinA] [(-2sin²A+sinA)/(1-sinA)cosA]
taking 2cosA and 2sinA as common
= [(-2cosA(1-cosA)/(1-cosA)sinA] [(-2sinA(1-sinA)/(1-sinA)cosA]
= [-2cosA/sinA][-2sinA/cosA]
= -2×-2 = 4
hence LHS = RHS
Similar questions