Math, asked by gdas7135, 10 months ago

solve that x^2-5x+10=5(x^2-5x+4)^1/2​

Answers

Answered by Arceus02
1

There are four solutions to this equation.

Given that,

 \sf  {x}^{2}  - 5x + 10 = 5( \sqrt{ {x}^{2} - 5x + 4 }  )

  • Putting x² - 5x = y,

 \sf \longrightarrow \: y + 10 = 5 \sqrt{y + 4}

Squaring both sides,

\sf \longrightarrow {y}^{2}  + 100 + 20y = 25(y + 4)

\sf \longrightarrow {y}^{2}  + 100 + 20y = 25y + 100

\sf \longrightarrow y {}^{2}  = 5y

\sf \longrightarrow y {}^{2}  - 5y = 0

\sf \longrightarrow y(y - 5) = 0

Hence either y = 0, or y = 5

If y = 0,

 \sf \: y = 0

\sf \longrightarrow {x}^{2}  - 5x = 0

\sf \longrightarrow x(x - 5) = 0

\sf \longrightarrow  \underline{ \underline{ x_{1} = 0}}

Or,

\sf \longrightarrow  \underline{ \underline{ x_{2} = 5}}

\\

And if y = 5,

 \sf \: y = 5

\sf \longrightarrow  {x}^{2}  - 5x = 5

\sf \longrightarrow   {x}^{2}  - 5x - 5 = 0

On comparing with ax² + bx + c = 0,

  • a = 1
  • b = -5
  • c = -5

Using quadratic formula,

  \sf \: x_{3,4} =  \dfrac{ - b \pm \sqrt{ {x}^{2} - 4ac } }{2a}

  \sf \longrightarrow \: x_{3,4} =  \dfrac{ - ( - 5) \pm \sqrt{ {( - 5)}^{2} - (4 \times 1 \times  - 5) } }{2 \times 1}

  \sf \longrightarrow \: x_{3,4} =  \dfrac{ 5 \pm \sqrt{ {25  +  20} } }{2}

\sf \longrightarrow  \underline{ \underline{ x_{3} =  \dfrac{5 +  \sqrt{45} }{2} }}

\sf \longrightarrow  \underline{ \underline{ x_{4} =  \dfrac{5  -   \sqrt{45} }{2} }}

Similar questions