Math, asked by ItsSpiderman44, 11 months ago

solve that y = sin (log x) ​

Answers

Answered by xShreex
36

\huge\frak{AnSwEr:-}

We have y = sin (log x)

Differentiate w. r. t. x

 \frac{dx}{dy}  =  \frac{d}{dx}  [sin( logx)] \\  \\ [Treat  \: log x  \: as \:  u  \: in  \: mind \:  and \:  use  \\  \\   \: the \:  formula  \: </p><p></p><p>of \:  derivative  \: of  \: sin \:  u]

 \frac{dy}{dx}  =  \cos( log \: x )  \times  \frac{d}{dx} ( log \: x)  \\  \\  \frac{dy}{dx} = \cos( log \:x). \frac{1}{x}  \\  \\  \frac{dy}{dx}  =  \frac{ \cos( log \: x) }{x}  \:

Answered by fab13
0

Answer:

y =  \sin( logx )  \\  =  &gt;  log_{ \sin( logx ) }y = 1 \\  =  &gt;   log_{ \sin( logx ) }(y)  =   log_{ \sin( logx) }0 \\  =  &gt; y = 0

Similar questions