Solve the 1st order ODE problem,
(3x+2y)dx= (3x+2y+2)dy
Answers
Answered by
0
Answer:
olve differential equation:
dydx=3x+2y3x+2y+2,y(−1)=−1
Use the following substitution:
u=3x+2y⟹dydx=12(dudx−3)
12(dudx−3)=uu+2
dudx=2uu+2+3=5u+6u+2
(u+25u+6)dudx=dx
Integrate:
∫(15+45(5u+6))dudx=∫dx
u5+425ln|5u+6|=x+C0
5u+4ln|5u+6|=25x+C1
5(3x+2y)+4ln|5(3x+2y)+6|−25x=C1
10(y−x)+4ln|15x+10y+6|=C1
5(y−x)+2ln|15x+10y+6|=C
Now we can use initial condition to find C .
Did you perhaps forget to use absolute values for expression inside log?
C=5(−1+1)+2ln|−15–10+6|=2ln(19)
5(y−x)+2ln|15x+10y+6|=2ln(19)
Step-by-step explanation:
Please mark me as branilest.
Answered by
0
Step-by-step explanation:
(3x+2y)dx=(3x+2y+2)dy
dx=2/dy
xy= 2
Similar questions