solve the above equation
Attachments:
Answers
Answered by
0
first take LCM of all
so we have, (x - b - c)/a + (x - a - b)/c + (x - c - a) / b = 3
bc(x - b - c) + ab(x - a - b) + ac(x - c - a) = 3abc
bcx - b²c - bc² + abx - a²b - ab² + acx - a²c - ac² = 3abc
abx + bcx + cax = 3abc + a²b + ab² + b²c + bc² + a²c + ac²
x(ab + bc + ac) = abc + a²b + ab²+ abc + b²c + bc²+ abc + a²c + ac²
x(ab + bc + ac) = ab(c + a + b) + bc(a + b + c) + ac(b + a + c)
x(ab + bc + ac) = (a + b + c)(ab + bc + ac)
x = (a + b + c)(ab + bc + ac)/(ab + bc + ac)
x = a + b + c
I hope it will help you.
so we have, (x - b - c)/a + (x - a - b)/c + (x - c - a) / b = 3
bc(x - b - c) + ab(x - a - b) + ac(x - c - a) = 3abc
bcx - b²c - bc² + abx - a²b - ab² + acx - a²c - ac² = 3abc
abx + bcx + cax = 3abc + a²b + ab² + b²c + bc² + a²c + ac²
x(ab + bc + ac) = abc + a²b + ab²+ abc + b²c + bc²+ abc + a²c + ac²
x(ab + bc + ac) = ab(c + a + b) + bc(a + b + c) + ac(b + a + c)
x(ab + bc + ac) = (a + b + c)(ab + bc + ac)
x = (a + b + c)(ab + bc + ac)/(ab + bc + ac)
x = a + b + c
I hope it will help you.
Similar questions