Math, asked by Anonymous, 1 month ago

Solve the above :-

Note :- Quality Answers will be appreciated and wrong will ne deleted ✓
And n = 100! ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know that

\boxed{ \sf{ \:  log_{x}(y)  = \dfrac{1}{ log_{y}(x) } }}

Given that

\rm :\longmapsto\:\dfrac{1}{ log_{2}(n) } + \dfrac{1}{ log_{3}(n) } + \dfrac{1}{ log_{4}(n) } +  -  -  -  + \dfrac{1}{ log_{100}(n) }

\rm \:  = \: log_{n}(2) + log_{n}(3) + log_{n}(4) +  -  -  -  -  + log_{100}(n)

\rm \:  = \: log_{n}(2 \times 3 \times 4 \times  -  -  -  -  \times 100)

 \:  \:  \:  \:  \:  \: \boxed{ \sf{ \because \:  log_{a}(x) +  log_{a}(y) =  log_{a}(xy) }}

can be rewritten as

\rm \:  =  \:  \: \: log_{n}(1 \times 2 \times 3 \times  \times  -  -  -  -  \times 100)

\rm \:  =  \:  \: \: log_{n}(100!)

\rm \:  =  \:  \: \: log_{(100!)}(100!)  \:  \:  \:  \:  \{ \because \: n \:  =  \: 100! \:  \}

\rm \:  =  \:  \: \:1

\boxed{ \sf{ \because \:  log_{x}(x) = 1 }}

Hence,

★ If n = 100! then

\rm :\longmapsto\:\dfrac{1}{log_{2}(n)}+\dfrac{1}{log_{3}(n)}+\dfrac{1}{ log_{4}(n) }+--+\dfrac{1}{log_{100}(n)} =1

Additional information :-

\boxed{ \sf{ \:logxy = logx \:  +  \: logy }}

\boxed{ \sf{ \:log \:  \frac{x}{y} = logx - logy}}

\boxed{ \sf{ \: log {x}^{y}  = y \: logx}}

\boxed{ \sf{ \:  log_{ {x}^{p} }( {x}^{q} )  =  \frac{q}{p} }}

\boxed{ \sf{ \:  {e}^{logx}  = x}}

\boxed{ \sf{ \:  {a}^{ log_{a}(x) } = x}}

Similar questions