solve the above problem
Answers
Answer:
A ) ( b + c ) = 2a
Step-by-step explanation:
Given-----> If the roots of the equation
( a - b ) x² + ( b - c ) x + ( c - a ) = 0 , are equal .
To find ------> Value of ( b + c ) is .
Solution------> ATQ,
( a - b ) x² + ( b - c ) x + ( c - a ) = 0
Comparing it with Ax² + Bx + C = 0 , we get,
A = ( a - b ) , B = ( b - c ) , C = ( c - a )
ATQ, roots of given equation is equal , so,
B² - 4AC = 0
=> ( b - c )² - 4 ( a - b ) ( c - a ) = 0
=> b² + c² - 2 bc - 4 ( ac - a² - bc + ab ) = 0
=> b² + c² - 2bc - 4ac + 4a² + 4bc - 4ab = 0
=> b² + c² + 4a² - 4ac - 4ab + 2bc = 0
=> b² + c² + ( - 2a )² + 2 ( - 2a ) ( c ) - 2 ( - 2a ) ( b ) + 2bc = 0
We have an identity ,
( p + q + r )² = p² + q² + r² + 2pq + 2qr + 2rp
Applying this identity here , we get,
=> ( b + c - 2a )² = 0
Taking square root of both side , we get,
=> ( b + c - 2a ) = 0
=> b + c = 2a