Physics, asked by meghanadh58, 10 months ago

solve the above problem ​

Attachments:

Answers

Answered by shadowsabers03
2

Here,

\displaystyle\longrightarrow\sf{\gamma=\dfrac {C_P}{C_V}}

By Meyer's Relation,

  • \displaystyle\sf{C_P=C_V+R}

Hence,

\displaystyle\longrightarrow\sf{\gamma=\dfrac {C_V+R}{C_V}\quad\quad\dots (1)}

But we know that, internal energy,

\displaystyle\longrightarrow\sf{u=\dfrac {n}{2}\,RT}

\displaystyle\longrightarrow\sf{\dfrac {du}{dT}=\dfrac {d}{dT}\left [\dfrac {n}{2}\,RT\right]}

\displaystyle\longrightarrow\sf{C_V=\dfrac {n}{2}\,R}

Hence (1) becomes,

\displaystyle\longrightarrow\sf{\gamma=\dfrac {\dfrac {n}{2}\,R+R}{\dfrac {n}{2}\,R}}

\displaystyle\longrightarrow\sf{\gamma=\dfrac {\left (\dfrac {n}{2}+1\right)\,R}{\dfrac {n}{2}\,R}}

\displaystyle\longrightarrow\sf{\gamma=\dfrac {\dfrac {n}{2}+1}{\dfrac {n}{2}}}

\displaystyle\longrightarrow\sf{\gamma=\dfrac {n+2}{n}}

\displaystyle\longrightarrow\sf{\underline {\underline {\gamma=1+\dfrac {2}{n}}}}

Hence (1) is the answer.

Similar questions