Math, asked by seemasanjaysingh2141, 7 months ago

solve the above problem ​

Attachments:

Answers

Answered by Akshasri
0

Answer:

Don't mind if t he answer is wrong

Attachments:
Answered by rocky200216
6

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • The mean of the given frequency distribution is 62.8 .

  • The sum of all the frequencies is 50.

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  1. The missing frequency \bf{f_1} .
  2. And the missing frequency \bf{f_2} .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

\begin{tabular}{| c | c | c | c |} \cline{1 - 4} Class interval & Frequency (f_i) & x_i & f_i x_i \\ \cline{1 - 4} 0 - 20 & 5 & 10 & 50 \\ 20 - 40 & f_1 & 30 & 30 f_1 \\ 40 - 60 & 10 & 50 & 500 \\ 60 - 80 & f_2 & 70 & 70 f_2 \\ 80 - 100 & 7 & 90 & 630 \\ 100 - 120 & 8 & 110 & 880 \\ \cline{1 - 4}   & \Sigma{f_i} = 30 + f_1 + f_2 &   & \Sigma{(f_i x_i)} = 2060 + 30f_1 + 70f_2 \\ \cline{1 - 4} \end{tabular} \\ \\

\Big[\:{\bf{NOTE\:\longrightarrow}}\:\rm{x_i\:=\:\dfrac{Sum\:of\:class\:interval}{2}\:\Big]} \\ \\

☯︎ According to the question,

ᴄᴀsᴇ - 1 ;-

\purple\bigstar\:\bf{\red{\overbrace{\underbrace{\green{The\:sum\:of\:all\:the\:frequencies\:=\:50\:}}}}} \\

 \\ \bf{:\implies\:30\:+\:f_1\:+\:f_2\:=\:50\:} \\

 \\ \bf{:\implies\:f_1\:+\:f_2\:=\:50\:-\:30\:} \\

 \\ \bf{:\implies\:f_1\:+\:f_2\:=\:20\:}----(1) \\

ᴄᴀsᴇ - 2 ;-

{\color{aqua}\bigstar}\:\bf{\pink{\overbrace{\underbrace{\blue{The\:mean\:of\:frequency\:distribution\:=\:62.8\:}}}}} \\

 \\ \bf{:\implies\:\dfrac{\Sigma{f_i\:x_i}}{\Sigma{f_i}}\:=\:62.8\:} \\

 \\ \bf{:\implies\:\dfrac{2060\:+\:30f_1\:+\:70f_2}{30\:+\:f_1\:+\:f_2}\:=\:62.8\:} \\

 \\ \bf{:\implies\:2060\:+\:30f_1\:+\:70f_2\:=\:1884\:+\:62.8\:(f_1\:+\:f_2)\:} \\ \\

☞︎︎︎ Putting the value of \bf{f_1\:+\:f_2} in the above equation from equation (1), we get

 \\ \bf{:\implies\:2060\:+\:30f_1\:+\:70f_2\:=\:1884\:+\:62.8\times{20}\:} \\

 \\ \bf{:\implies\:2060\:+\:30f_1\:+\:70f_2\:=\:1884\:+\:1256\:} \\

 \\ \bf{:\implies\:30f_1\:+\:70f_2\:=\:3140\:-\:2060\:} \\

 \\ \bf{:\implies\:10\:(3f_1\:+\:7f_2)\:=\:1080\:} \\

 \\ \bf{:\implies\:3f_1\:+\:7f_2\:=\:108\:}----(2) \\ \\

➪ Multiple '3' in equation (1), we get

\huge\red\checkmark  \\ \bf{:\implies\:3f_1\:+\:3f_2\:=\:60\:}----(3) \\ \\

✈︎ Now substracting equation (3) from equation (2), we get

 \\ \bf{:\implies\:3f_1\:+\:7f_2\:-\:(3f_1\:+\:3f_2)\:=\:108\:-\:60\:} \\

 \\ \bf{:\implies\:3f_1\:+\:7f_2\:-\:3f_1\:-\:3f_2\:=\:48\:} \\

 \\ \bf{:\implies\:7f_2\:-\:3f_2\:=\:48\:} \\

 \\ \bf{:\implies\:4f_2\:=\:48\:} \\

 \\ \bf{:\implies\:f_2\:=\:\dfrac{48}{4}\:} \\

 \\ \bf\green{:\implies\:f_2\:=\:12\:} \\ \\

✈︎ Now putting the value of \bf{f_2} in the equation (1), we get

 \\ \bf{:\implies\:f_1\:+\:12\:=\:20\:} \\

 \\ \bf{:\implies\:f_1\:=\:20\:-\:12\:} \\

 \\ \bf\green{:\implies\:f_1\:=\:8\:} \\

__________________________

\huge{\color{orange}\therefore} [1] The missing frequency \bf{f_1} is \bf\gray{8} .

\huge{\color{orange}\therefore} [2] The missing frequency \bf{f_2} is \bf\gray{12} .

Similar questions