Math, asked by FlashNish, 1 year ago

solve the above problem of trigonometric chapter.....​

Attachments:

Answers

Answered by 22072003
4
\tt{ {\dfrac{cosA}{1 - tanA}} + {\dfrac{sinA}{1 - cotA}} }


{\boxed{\tt{tanA = {\dfrac{sinA}{cosA}}}}}


{\boxed{\tt{cotA = {\dfrac{cosA}{sinA}}}}}


\tt{\implies {\dfrac{cosA}{1 - {\dfrac{sinA}{cosA}} }} + {\dfrac{sinA}{1 - {\dfrac{cosA}{sinA}} }} }


\tt{\implies {\dfrac{cosA}{ {\dfrac{cosA - sinA}{cosA}} }} + {\dfrac{sinA}{ {\dfrac{sinA - cosA}{sinA}} }} }


\tt{\implies {\dfrac{cos^2A}{cosA - sinA}} + {\dfrac{sin^2A}{sinA - cosA}} }


\tt{Multiply \ {\dfrac{sin^2A}{sinA - cosA}} \ by \ -1, \ we \ get}


\tt{\implies {\dfrac{cos^2}{cosA - sinA}} - {\dfrac{sin^2A}{cosA - sinA}} }


\tt{\implies {\dfrac{cos^2A - sin^2A}{cosA - sinA}} }


{\boxed{\tt{a^2 - b^2 = (a + b)(a - b)}}}


\tt{Here, \ a = cosA, \ b = sinA}


\tt{\implies {\dfrac{(cosA + sinA)(cosA - sinA)}{cosA - sinA}} }


\tt{\implies {\dfrac{(cosA + sinA)( {\cancel{cosA - sinA}} )}{ {\cancel{cosA - sinA}} }}}


\tt{\implies sinA + cosA}


\tt{\implies R.H.S.}


\tt{Hence, \ proved.}
Similar questions