Math, asked by ava71, 1 year ago

solve the above question...​

Attachments:

Answers

Answered by StarrySoul
33

\mathfrak{\huge{\underline{Solution:}}}

\textbf{\huge{\underline{Given:}}}

● Diameter = 84cm

● Height = 120 cm

● Area of playground = 1584m^2

__________________________

\star Area of roller = C.S.A of cylinder

 \star \rm \: C.S.A = 2 \: \pi \: r \: h

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{ 7}  \times42 \times 120

 \hookrightarrow \sf \large  \boxed{31680 \sf \:  {m}^{2} }

\textbf{\underline{\underline{Area\:to\:be\:covered:}}}

 \hookrightarrow \sf \: 1584 \times 10000

 \hookrightarrow \large \sf \boxed{15840000 \sf  \:  {cm}^{2} }

\textbf{\underline{\underline{Total\:No.\:of\:revolutions:}}}

 \hookrightarrow  \sf   \cancel\dfrac{15840000}{31680}

 \hookrightarrow \sf \large \boxed{500 \sf \: revolutions}

Answered by Anonymous
20

\bf{\Huge{\underline{\boxed{\rm{\red{ANSWER\::}}}}}}

Given:

Diameter & length of a roller are 84cm and 120cm respectively.

\bf{\Large{\underline{\sf{\green{To\:find\::}}}}}

The revolution can the roller level the playground of area 1584m².

\bf{\Large{\underline{\sf{\pink{Explanation\::}}}}}

We have,

\bf\begin{cases}\sf{Diameter=84cm}\\ \sf{Length\:of\:roller=120cm}\\ \sf{Area\:of\:playground=1584m^{2}}\end{cases}

→ Radius of the roller= \frac{84}{2}cm

→ Radius of the roller= 42cm.

  • When a wheel roller rotates completely,it cover certain distance.
  • If roller moves in whole playground.

We know that formula of the curved surface area of cylinder: 2πrh

We know that; \boxed{1m=100cm\\&1cm=\frac{1}{100} m}}

  • Radius of the roller= 0.42m
  • Length of the roller= 1.2m

Now,

Area of playground=Curved surface area of roller×Number of revolutions

  • Curved surface area of roller:

⇒ 2πrh  [sq.units]

(2*\frac{22}{7} *0.42*1.2)m^{2}

(\frac{44}{\cancel{7}} *\cancel{0.42}*1.2)m^{2}

⇒ (44× 0.06× 1.2)m²

⇒ 3.168m²

Therefore,

→ Area of playground = curved surface area of roller ×No. of revolutions

→ 1584m² = 3.168m² × Number of revolutions

→ Number of revolutions= \frac{1584*1000m^{2} }{3.168*1000m^{2} }

→ Number of revolutions= \cancel{\frac{1584000m^{2} }{3168m^{2} } }

→ Number of revolutions = 500.

Similar questions