Math, asked by ParkChaemin, 4 months ago

solve the above question.​

Attachments:

Answers

Answered by Arceus02
2

Given:-

  •  {{x}^{2}  - (2b - 1)x + ( {b}^{2}  - b - 20) = 0}

\\

To find:-

  • The value of x in terms of b.

\\

Answer:-

Given that,

 {{x}^{2}  - (2b - 1)x + ( {b}^{2}  - b - 20) = 0}

Splitting the middle term of (b² - b - 20) term,

 \longrightarrow {x}^{2}  - (2b - 1)x +  \Big \{ {b}^{2}  - 5b + 4b - 20 \Big \} = 0

 \longrightarrow {x}^{2}  - (2b - 1)x +  \Big \{ b(b - 5) + 4(b - 5) \Big \} = 0

 \longrightarrow {x}^{2}  - (2b - 1)x +   (b - 5)(b + 4)  = 0

We observe that, (b - 5) + (b + 4)= 2b - 1. Hence, we can split the middle term that is (2b - 1)x as follows,

 \longrightarrow {x}^{2}  -  \Big \{(b - 5) + (b + 4) \Big \}x +   (b  - 5)(b  + 4)  = 0

 \longrightarrow {x}^{2}  -  (b - 5)x  -  (b + 4) x +   (b  - 5)(b  + 4)  = 0

 \longrightarrow x  \Big \{x -  (b - 5) \Big \}  -  (b + 4) \Big \{ x  -  (b   - 5) \Big \}  = 0

 \longrightarrow   \Big \{x -  (b - 5) \Big \}  \Big \{ x  -  (b    + 4) \Big \}  = 0

So

either {x - (b - 5)} = 0,

or {x - (b + 4)} = 0

\\

If {x - (b - 5)} = 0:

 x -  (b - 5)    = 0

  \longrightarrow x = b - 5

\\

If {x - (b + 4)} = 0:

 x = b  + 4

  \longrightarrow x = b  + 4

\\

Hence,

 \longrightarrow \underline{ \underline{x = b - 5 \: or \: x = b + 4}}

Similar questions