Math, asked by arjun5799, 3 months ago

solve the above question​

Attachments:

Answers

Answered by Anonymous
9

Given

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 83

To find

 \sf \to \:  {x}^{3}  -  \dfrac{1}{ {x}^{3} }

So Now Take

 \sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \dfrac{1}{x}

 \sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2

\sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{2}  = 83 - 2

\sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{2}  = 81

\sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{}  =  \sqrt{ 81}

\sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{}  =  9

Now Take

 \sf \to \:  \bigg(x -  \dfrac{1}{x}  \bigg) ^{3}  =  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  - 3 \times x \times  \dfrac{1}{x}  \bigg(x -  \dfrac{1}{x}  \bigg)

\sf \to \:  \bigg(x -  \dfrac{1}{x}  \bigg) ^{3}  =  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  - 3   \bigg(x -  \dfrac{1}{x}  \bigg)

Now put the value

\sf \to \bigg(x  -   \dfrac{1}{x}  \bigg) ^{}  =  9

We get

 \sf \to \: (9) {}^{3}  =  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  - 3(9)

\sf \to \: (729 ) =  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  - 27

\sf \to \:    {x}^{3}  -  \dfrac{1}{ {x}^{3} }   = 729 +  27

\sf \to \:   {x}^{3}  -  \dfrac{1}{ {x}^{3} }   = 756

Answer

\sf \to \:   {x}^{3}  -  \dfrac{1}{ {x}^{3} }   = 756

Similar questions