Math, asked by xyzabc2005, 1 day ago

solve the above question​

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{ {cos}^{2} x}{ {sin}^{4} x} dx

can be rewritten as

 \rm \:  \:  =  \: \:\displaystyle\int\sf \dfrac{ {cos}^{2} x}{ {sin}^{2} \:  x \:  \times  {sin}^{2} x} dx

 \rm \:  \:  =  \: \displaystyle\int\sf \bigg(\dfrac{ {cos}^{2}x }{ {sin}^{2} x}  \times \dfrac{1}{ {sin}^{2}x } \bigg)

 \rm \:  \:  =  \: \displaystyle\int\sf  {cot}^{2}x \:  {cosec}^{2}x \: dx

Now, we use method of Substitution,

 \red{\rm :\longmapsto\:Let \: cotx \:  =  \: y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\:\dfrac{d}{dx} \: cotx \:  =  \:\dfrac{d}{dx} y}

 \red{\rm :\longmapsto\: -  \:  {cosec}^{2}x \:  = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:  \:  {cosec}^{2}x  \: dx\:  = -  \: dy}

So, on substituting all these values, we get

 \rm \:  \:  =  \:  -  \: \displaystyle\int\sf  {y}^{2}dy

 \rm \:  \:  =  \:  -  \: \dfrac{ {y}^{2 + 1} }{2 + 1}  + c

 \rm \:  \:  =  \:  -  \: \dfrac{ {y}^{3} }{3}  + c

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \sf{  \because \: \: \displaystyle\int\sf  {x}^{n} dx = \dfrac{ {x}^{n + 1} }{n + 1}  + c}}}

 \rm \:  \:  =  \:  -  \: \dfrac{ {cot}^{3}x}{3}  + c

Hence,

\bf\implies \:\displaystyle\int\sf \dfrac{ {cos}^{2} x}{ {sin}^{4} x} dx \rm \:  \:  =  \:  -  \: \dfrac{ {cot}^{3}x}{3}  + c

Additional Information :-

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf k \: dx = kx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf  {e}^{x}  \: dx =  {e}^{x}  \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf  {a}^{x}  \: dx =   \frac{ {a}^{x} }{loga}  \:  +  \: c \:  \: where \: a > 0 }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cosx \: dx =  \: sinx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf sinx \: dx =  \:  -  \: cosx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf secx  \: tanx\: dx =  \:   \: secx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cosecx  \: cotx\: dx =  \:    - \:  \: cosecx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf tanx \:  =  \: log \: secx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cotx \:  =  \: log \: sinx \:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cosecx \:  =  \: log \: (cosecx  + cotx)\:  +  \: c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf secx \:  =  \: log \: (secx  + tanx)\:  +  \: c }}}

Similar questions