Math, asked by hiranyasoni21, 1 month ago

solve the above question

Attachments:

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

↝ Let time taken by tap of larger diameter be 'x' hours.

So,

↝ Time taken by tap of smaller diameter be 'x + 10' hours

Let assume that volume of tank be 'y' units.

Now,

Amount of water filled by tap of larger diameter in 1 hour

\rm \:  =  \: \dfrac{y}{x}

Amount of water filled by tap of smaller diameter in 1 hour

\rm \:  =  \: \dfrac{y}{x + 10}

According to statement,

↝ Total time taken is 9 3/8 hours.

So,

\rm :\longmapsto\:\dfrac{75}{8}\bigg(\dfrac{y}{x}  + \dfrac{y}{x + 10} \bigg) = y

\rm :\longmapsto\:\dfrac{75y}{8}\bigg(\dfrac{1}{x}  + \dfrac{1}{x + 10} \bigg) = y

\rm :\longmapsto\:\dfrac{75}{8}\bigg(\dfrac{1}{x}  + \dfrac{1}{x + 10} \bigg) = 1

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{x + 10}  = \dfrac{8}{75}

\rm :\longmapsto\: \dfrac{x + 10 + x}{x(x + 10)}  = \dfrac{8}{75}

\rm :\longmapsto\: \dfrac{2x + 10}{x(x + 10)}  = \dfrac{8}{75}

\rm :\longmapsto\: \dfrac{2(x + 5)}{x(x + 10)}  = \dfrac{8}{75}

\rm :\longmapsto\: \dfrac{x + 5}{x(x + 10)}  = \dfrac{4}{75}

\rm :\longmapsto\:75x + 375 = 4 {x}^{2}  + 40x

\rm :\longmapsto\:4 {x}^{2}  + 40x - 75x - 375 = 0

\rm :\longmapsto\:4 {x}^{2} -35x - 375 = 0

\rm :\longmapsto\:4 {x}^{2} -60x + 25x - 375 = 0

\rm :\longmapsto\:4x(x - 15) + 25(x - 15) = 0

\rm :\longmapsto\:(x - 15)(4x + 25) = 0

\bf\implies \:x = 15

Hence,

Time taken by tap of larger diameter = 15 hours

and

Time taken by tap of smaller diameter = 25 hours

Similar questions