Math, asked by arulselvi14, 3 months ago

Solve the above question with suitable identity.
Spam answers reported!​

Attachments:

Answers

Answered by Anonymous
61

Question :-

Solve the above question with suitable identity.

\sf (m^2 - n^2 m)^2 + 2 m^3n^2

Answer :-

Identity used -

  • \sf (a - b)^2 = a^2 + b^2 - 2ab

Solution -

\sf (m^2 - n^2 m)^2 + 2 m^3n^2

Using the identity -

  • \sf (a - b)^2 = a^2 + b^2 - 2ab

\sf (m^2)^2 + (n^2m)^2 - 2(m^2)(n^2m) + 2m^3n^2

\sf m^4 + n^2m^2 - \cancel{2 m^3n^2} + \cancel{2 m^3n^2}

\sf m^4 + n^2m^2

\boxed{\sf (m^2 - n^2 m)^2 + 2 m^3n^2 = m^4 + n^2m^2}

Answered by LilBabe
57

Question

{ \boxed{ \bf{ \rm{(m^{2} - n {}^{2} m ){}^{2}  + 2m {}^{3} n {}^{2}  }}}}

Solve with suitable identity

Answer

 { \bf{ \rm{(m^{2} - n {}^{2} m ){}^{2}  + 2m {}^{3} n {}^{2}  }}} is in the form of \tt \: (a - b) {}^{2}  \: where  \tt \: a = m {}^{2}  \: and \: b \:  = n {}^{2} m

We know,

{ \boxed{ \tt \: (a - b) {}^{2}  = a {}^{2}  - 2ab + b {}^{2} }}

Substituting the values.

 \boxed { \tt \: (m {}^{2} - n {}^{2} m) {}^{2}} = \tt m {}^{2}²  - 2(m²)(n {}^{2}m) + (n {}^{2} m) {}^{2}

  \tt\mapsto  m {}^{4}  - \cancel{2m {}^{3}n {}^{2} }+ n {}^{2} m {}^{2}  + \cancel{2m {}^{3} n {}^{2} }

  \tt\mapsto  m {}^{4}   + n {}^{2} m {}^{2}

  { \boxed { \boxed{\tt\mapsto  m {}^{4}    +  n {}^{2} m {}^{2} }} }

Basic formulas

 { \color{lightgreen}{\boxed {\boxed {\begin{array}{c} \tt \: (a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab\\ \:  \tt(a  - b) {}^{2}  = a {}^{2}    +  b {}^{2}   -  2ab\\ \:  \tt \:(a - b)(a + b) = a {}^{2}  - b {}^{2}  \: \end{array}}}}}

Similar questions