Math, asked by harshithaofficial23, 1 month ago

Solve the above with clear steps.

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Convert the following in to product :

\rm :\longmapsto\:sin50\degree  - cos80\degree

\large\underline{\sf{Solution-}}

Given Trigonometric function is ,

\rm :\longmapsto\:sin50\degree  - cos80\degree

can be rewritten as

\rm \:  =  \:  \: \:sin50\degree  - cos(90\degree  - 10\degree )

We know that,

\boxed{ \bf{ \: cos(90\degree  - x) = sinx}}

So, using this result, we get

\rm \:  =  \:  \: \:sin50\degree  - sin10\degree

Now, we know that

\boxed{ \bf{ \: sinx - siny = 2cos\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

So, using this identity, we get

\rm \:  =  \:  \: 2cos\bigg(\dfrac{50\degree  + 10\degree }{2}  \bigg)sin\bigg(\dfrac{50\degree  - 10\degree }{2}  \bigg)

\rm \:  =  \:  \: 2cos\bigg(\dfrac{60\degree  }{2}  \bigg)sin\bigg(\dfrac{40\degree   }{2}  \bigg)

\rm \:  =  \:  \: 2cos30\degree sin20\degree

\rm \:  =  \:  \: 2 \times \dfrac{ \sqrt{3} }{2}   \times sin20\degree

\rm \:  =  \:  \:  \sqrt{3} \: sin20\degree

Hence,

\bf :\longmapsto\:sin50\degree  - cos80\degree  =  \sqrt{3} \: sin20\degree

Additional Information :-

\boxed{ \bf{ \: sinx  +  siny = 2sin\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \bf{ \: cosx  +  cosy = 2cos\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \bf{ \: cosx   -   cosy = 2sin\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{y - x}{2}  \bigg)}}

\boxed{ \bf{ \: 2sinxcosy = sin(x + y) + sin(x - y)}}

\boxed{ \bf{ \: 2cosxcosy = cos(x + y) + cos(x - y)}}

\boxed{ \bf{ \: 2sinxsiny = cos(x - y) - cos(x + y)}}

Similar questions