Math, asked by harshithaofficial23, 9 months ago

Solve the above with clear steps.( quadratic equations).​

Attachments:

Answers

Answered by BrainlyPopularman
9

GIVEN :

√3 x² - √2 x + 3√3 = 0

TO FIND :

Value of 'x' = ?

SOLUTION :

Using formula –

 \bf \implies{ \boxed{\bf \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}}

• Here –

  \:  \:  \:  \: \bf {\huge{.}} \:  \: a =  \sqrt{3}

  \:  \:  \:  \: \bf {\huge{.}} \:  \: b = - \sqrt{2}

  \:  \:  \:  \: \bf {\huge{.}} \:  \: c =  3\sqrt{3}

• Put the values –

 \bf \implies x =  \dfrac{ - ( - \sqrt{2} ) \pm \sqrt{ {( -  \sqrt{2}) }^{2} - 4( \sqrt{3})(3 \sqrt{3}) } }{2 \sqrt{3} }

 \bf \implies x =  \dfrac{  \sqrt{2}  \pm \sqrt{ 2 - 4( \sqrt{3})(3 \sqrt{3}) } }{2 \sqrt{3} }

 \bf \implies x =  \dfrac{  \sqrt{2}  \pm \sqrt{ 2 - 12(3)} }{2 \sqrt{3} }

 \bf \implies x =  \dfrac{  \sqrt{2}  \pm \sqrt{ 2 - 36} }{2 \sqrt{3} }

 \bf \implies x =  \dfrac{  \sqrt{2}  \pm \sqrt{ - 34} }{2 \sqrt{3} }

 \bf \implies x =  \dfrac{1 \pm \sqrt{ - 17} }{ \sqrt{6} }

 \bf \implies x =  \dfrac{1 \pm \sqrt{17} \sqrt{ - 1}  }{ \sqrt{6} }

 \bf \implies x =  \dfrac{1 \pm \sqrt{17} \iota }{ \sqrt{6}} \:  \:  \: \:\:\:  \:  \{  \:  \: \because \:  \: \sqrt{ - 1}  =  \iota  \}

Positive (+) sign :

 \bf \implies \large{ \boxed{ \bf x =  \dfrac{1 +  \sqrt{17} \iota }{ \sqrt{6}}}}

Negetive (-) sign :

 \bf \implies \large{ \boxed{ \bf x =  \dfrac{1 -  \sqrt{17} \iota }{ \sqrt{6}}}}

Similar questions