Math, asked by ItzMahira, 28 days ago

solve the attached question!!

● Moderators
● Brainy stars
● Other best users

Spammers will be reported!!
​​​

Attachments:

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \tt{f(x) =  \sqrt{ cos \left( \dfrac{\pi}{ {x}^{2} }  \right) } }

 \tt{ \implies \: cos \left(  \dfrac{\pi}{ {x}^{2} } \right) \ge0}

 \tt{ \implies \:(4n  -  1) \dfrac{\pi}{2}   \leqslant \dfrac{\pi}{ {x}^{2} }   \leqslant  (4n + 1) \dfrac{\pi}{2} \:, \:  \:  \:  \:  \:  \:  \:  \:  \:  \forall \: n \in  \mathbb{Z}}

 \tt{ \implies \:\dfrac{4n - 1}{2}   \leqslant \dfrac{1}{ {x}^{2} }   \leqslant   \dfrac{4n + 1}{2} \:, \:  \:  \:  \:  \:  \:  \:  \:  \:  \forall \: n \in  \mathbb{Z}}

 \tt{ \implies \:\dfrac{2}{4n - 1} \geqslant {x}^{2}  \geqslant   \dfrac{2}{4n + 1} \:, \:  \:  \:  \:  \:  \:  \:  \:  \:  \forall \: n \in  \mathbb{Z}}

 \tt{ \implies \: \sqrt{\dfrac{2}{4n  +  1} }\leqslant x  \leqslant    \sqrt{\dfrac{2}{4n  -  1}} \:, \:  \:  \:  \:  \:  \:  \:  \:  \:  \forall \: n \in  \mathbb{Z^{+}}}

So,

 \bigstar \:  \:  \green{ \bf{dom(f) \in \left[ \sqrt{ \dfrac{2}{4n + 1} } \:  \: ,   \:  \:  \sqrt{ \dfrac{2}{4n - 1} } \right] \:  \:  \:  \:  \:  \:  \:  \:  \forall \: n \in \mathbb{ Z^{+}}}}

Answered by Ashmit251
3

Answer:

Hope It Helps You.

See The Attached File.

Please Appreciate Me.

Attachments:
Similar questions