Math, asked by JeffrinG, 2 months ago

Solve the attached question.... urgent....​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

x = a + b \omega + c { \omega}^{2}  \\ y =   a \omega + b { \omega}^{2}  + c \\ z =   a { \omega}^{2}  + b + c\omega

Now,

x + y + z = a(1 +  \omega + \omega^{2} ) + b(1 + \omega + \omega^{2}   )  +c (1 +  \omega +\omega^{2} ) \\

We know,  1+\omega+\omega^2=0

So,

 \implies \: x + y + z = a(0) + b(0  )  +c (0 ) \\

 \implies \: x + y + z = 0\\

 \implies \: x + y  =  - z \\

 \implies \: (x + y)^{3}   = ( - z) ^{3}  \\

 \implies \: x^{3}  + y^{3} + 3 {x}^{2} y + 3x {y}^{2}    = - z ^{3}  \\

 \implies \: x^{3}  + y^{3} + 3x y (x+ y)    +  z ^{3}  = 0 \\

 \implies \: x^{3}  + y^{3} + 3x y ( - z)    +  z ^{3}  = 0 \\

 \implies \: x^{3}  + y^{3}  -  3x y z    +  z ^{3}  = 0 \\

 \implies \: x^{3}  + y^{3}      +  z ^{3}  = 3xyz \\

 \implies \: \frac{ x^{3}  + y^{3}      +  z ^{3}}{xyz}  = \frac{ 3xyz}{xyz} \\

 \implies \: \frac{ x^{3} }{xyz} +\frac{ y^{3} }{xyz}  + \frac{ z^{3} }{xyz}  = 3\\

 \implies \: \frac{ x^{2} }{yz} +\frac{ y^{2} }{zx}  + \frac{ z^{2} }{xy}  = 3\\

Similar questions