Math, asked by blushybabe6, 5 months ago

solve the attachment!!!✌✌​

Attachments:

Answers

Answered by Anonymous
36

Let ABC be an Isosceles triangle having perimeter 44 cm.

The ratio of the equal side to its base is 4:3.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let sides of triangle be in form of 'x'

Therefore,

Equal sides, AB = AC = 4x

Base of triangle, BC = 3x

We know that,

\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = Sum\;of\;sides}}}}\\ \\

:\implies\sf 4x + 4x + 3x = 44\\ \\

:\implies\sf 11x = 44\\ \\

:\implies\sf x = \cancel{ \dfrac{44}{11}}\\ \\

:\implies{\boxed{\frak{\pink{x = 4}}}}\;\bigstar\\ \\

Therefore, measure of sides are,

AB = a = 4 × 4 = 16 cm

AC = b = 4 × 4 = 16 cm

BC = c = 3 × 4 = 12 cm

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, for finding the height of a triangle we will use pythagoras theorem in 1 half of the given isosceles triangle as for pythagoras theorem we need right angled triangle, Then the base of the triangle will be \sf {\cancel\frac{12}{2}} = 6 cm.

:\implies\sf (hypotenuse)^2 = base^2 + height^2 \\ \\

:\implies\sf 16 \times 16 = 6 \times 6 +  {(height)}^{2}  \\ \\

:\implies\sf 256 = 36 +  {(height)}^{2} \\ \\

:\implies\sf 256 - 36 =  {(height)}^{2} \\ \\

:\implies\sf 220 =  {(height)}^{2} \\ \\

:\implies\sf  \sqrt{220}  = height \\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Also, we can find Area of given Isosceles triangle:

\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = \frac{1}{2}  \times base \times \: height}}}}\\ \\

:\implies\sf  \frac{1}{2}  \times 12 \times   \sqrt{220}\\ \\

:\implies\sf  6 \times 2 \sqrt{55} \\ \\

:\implies{\boxed{\frak{\pink{12 \sqrt{55}\:sq.\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;area\;of\; Isosceles\;triangle\;is\; \bf{12\sqrt{55}\;sq.\;cm}.}}}

Answered by Anonymous
1

Answer:

Let ABC be an Isosceles triangle having perimeter 44 cm.

The ratio of the equal side to its base is 4:3.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let sides of triangle be in form of 'x'

Therefore,

Equal sides, AB = AC = 4x

Base of triangle, BC = 3x

We know that,

\begin{gathered}\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = Sum\;of\;sides}}}}\\ \\\end{gathered}

Perimeter

=Sumofsides

\begin{gathered}:\implies\sf 4x + 4x + 3x = 44\\ \\\end{gathered}

:⟹4x+4x+3x=44

\begin{gathered}:\implies\sf 11x = 44\\ \\\end{gathered}

:⟹11x=44

\begin{gathered}:\implies\sf x = \cancel{ \dfrac{44}{11}}\\ \\\end{gathered}

:⟹x=

11

44

\begin{gathered}:\implies{\boxed{\frak{\pink{x = 4}}}}\;\bigstar\\ \\\end{gathered}

:⟹

x=4

Therefore, measure of sides are,

AB = a = 4 × 4 = 16 cm

AC = b = 4 × 4 = 16 cm

BC = c = 3 × 4 = 12 cm

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, for finding the height of a triangle we will use pythagoras theorem in 1 half of the given isosceles triangle as for pythagoras theorem we need right angled triangle, Then the base of the triangle will be \sf {\cancel\frac{12}{2}} = 6 cm.

2

12

=6cm.

\begin{gathered}:\implies\sf (hypotenuse)^2 = base^2 + height^2 \\ \\\end{gathered}

:⟹(hypotenuse)

2

=base

2

+height

2

\begin{gathered}:\implies\sf 16 \times 16 = 6 \times 6 + {(height)}^{2} \\ \\\end{gathered}

:⟹16×16=6×6+(height)

2

\begin{gathered}:\implies\sf 256 = 36 + {(height)}^{2} \\ \\\end{gathered}

:⟹256=36+(height)

2

\begin{gathered}:\implies\sf 256 - 36 = {(height)}^{2} \\ \\\end{gathered}

:⟹256−36=(height)

2

\begin{gathered}:\implies\sf 220 = {(height)}^{2} \\ \\\end{gathered}

:⟹220=(height)

2

\begin{gathered}:\implies\sf \sqrt{220} = height \\ \\\end{gathered}

:⟹

220

=height

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Also, we can find Area of given Isosceles triangle:

\begin{gathered}\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = \frac{1}{2} \times base \times \: height}}}}\\ \\\end{gathered}

Perimeter

=

2

1

×base×height

\begin{gathered}:\implies\sf \frac{1}{2} \times 12 \times \sqrt{220}\\ \\\end{gathered}

:⟹

2

1

×12×

220

\begin{gathered}:\implies\sf 6 \times 2 \sqrt{55} \\ \\\end{gathered}

:⟹6×2

55

\begin{gathered}:\implies{\boxed{\frak{\pink{12 \sqrt{55}\:sq.\;cm}}}}\;\bigstar\\ \\\end{gathered}

:⟹

12

55

sq.cm

\therefore\;{\underline{\sf{Hence,\;the\;area\;of\; Isosceles\;triangle\;is\; \bf{12\sqrt{55}\;sq.\;cm}.}}}∴

Hence,theareaofIsoscelestriangleis12

55

sq.cm.

Similar questions