solve the attachment!!!✌✌
Answers
Let ABC be an Isosceles triangle having perimeter 44 cm.
The ratio of the equal side to its base is 4:3.
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯ Let sides of triangle be in form of 'x'
⠀
Therefore,
⠀
Equal sides, AB = AC = 4x
Base of triangle, BC = 3x
⠀
We know that,
⠀
Therefore, measure of sides are,
⠀
AB = a = 4 × 4 = 16 cm
AC = b = 4 × 4 = 16 cm
BC = c = 3 × 4 = 12 cm
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Now, for finding the height of a triangle we will use pythagoras theorem in 1 half of the given isosceles triangle as for pythagoras theorem we need right angled triangle, Then the base of the triangle will be
⠀
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯ Also, we can find Area of given Isosceles triangle:
Answer:
Let ABC be an Isosceles triangle having perimeter 44 cm.
The ratio of the equal side to its base is 4:3.
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯ Let sides of triangle be in form of 'x'
⠀
Therefore,
⠀
Equal sides, AB = AC = 4x
Base of triangle, BC = 3x
⠀
We know that,
⠀
\begin{gathered}\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = Sum\;of\;sides}}}}\\ \\\end{gathered}
⋆
Perimeter
△
=Sumofsides
\begin{gathered}:\implies\sf 4x + 4x + 3x = 44\\ \\\end{gathered}
:⟹4x+4x+3x=44
\begin{gathered}:\implies\sf 11x = 44\\ \\\end{gathered}
:⟹11x=44
\begin{gathered}:\implies\sf x = \cancel{ \dfrac{44}{11}}\\ \\\end{gathered}
:⟹x=
11
44
\begin{gathered}:\implies{\boxed{\frak{\pink{x = 4}}}}\;\bigstar\\ \\\end{gathered}
:⟹
x=4
★
Therefore, measure of sides are,
⠀
AB = a = 4 × 4 = 16 cm
AC = b = 4 × 4 = 16 cm
BC = c = 3 × 4 = 12 cm
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Now, for finding the height of a triangle we will use pythagoras theorem in 1 half of the given isosceles triangle as for pythagoras theorem we need right angled triangle, Then the base of the triangle will be \sf {\cancel\frac{12}{2}} = 6 cm.
2
12
=6cm.
\begin{gathered}:\implies\sf (hypotenuse)^2 = base^2 + height^2 \\ \\\end{gathered}
:⟹(hypotenuse)
2
=base
2
+height
2
⠀
\begin{gathered}:\implies\sf 16 \times 16 = 6 \times 6 + {(height)}^{2} \\ \\\end{gathered}
:⟹16×16=6×6+(height)
2
\begin{gathered}:\implies\sf 256 = 36 + {(height)}^{2} \\ \\\end{gathered}
:⟹256=36+(height)
2
\begin{gathered}:\implies\sf 256 - 36 = {(height)}^{2} \\ \\\end{gathered}
:⟹256−36=(height)
2
\begin{gathered}:\implies\sf 220 = {(height)}^{2} \\ \\\end{gathered}
:⟹220=(height)
2
\begin{gathered}:\implies\sf \sqrt{220} = height \\ \\\end{gathered}
:⟹
220
=height
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯ Also, we can find Area of given Isosceles triangle:
\begin{gathered}\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = \frac{1}{2} \times base \times \: height}}}}\\ \\\end{gathered}
⋆
Perimeter
△
=
2
1
×base×height
\begin{gathered}:\implies\sf \frac{1}{2} \times 12 \times \sqrt{220}\\ \\\end{gathered}
:⟹
2
1
×12×
220
\begin{gathered}:\implies\sf 6 \times 2 \sqrt{55} \\ \\\end{gathered}
:⟹6×2
55
\begin{gathered}:\implies{\boxed{\frak{\pink{12 \sqrt{55}\:sq.\;cm}}}}\;\bigstar\\ \\\end{gathered}
:⟹
12
55
sq.cm
★
\therefore\;{\underline{\sf{Hence,\;the\;area\;of\; Isosceles\;triangle\;is\; \bf{12\sqrt{55}\;sq.\;cm}.}}}∴
Hence,theareaofIsoscelestriangleis12
55
sq.cm.