Math, asked by RobinPandey, 2 months ago

Solve the attachment..
Fast Please​

Attachments:

Answers

Answered by MrImpeccable
36

ANSWER:

Given:

  • x = (√3-√2)/(√3+√2)
  • y = (√3+√2)/(√3-√2)

To Find:

  • x^2 + y^2 + xy

Solution:

We are given that,

\implies x=\dfrac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}

On rationalising,

\implies x=\dfrac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\times\dfrac{\sqrt3-\sqrt2}{\sqrt3-\sqrt2}

So,

\implies x=\dfrac{(\sqrt3-\sqrt2)^2}{(\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}

We know that,

\hookrightarrow (a-b)(a+b)=a^2-b^2

And,

\hookrightarrow (a-b)^2=a^2-2ab+b^2

So,

\implies x=\dfrac{(\sqrt3)^2-2(\sqrt3)(\sqrt2)+(\sqrt2)^2}{(\sqrt3)^2-(\sqrt2)^2}

\implies x=\dfrac{3-2\sqrt6+2}{3-2}

\implies x=\dfrac{5-2\sqrt6}{1}

Hence,

\implies x=5-2\sqrt6

We are also given,

\implies y=\dfrac{\sqrt3+\sqrt2}{\sqrt3-\sqrt2}

On rationalising,

\implies y=\dfrac{\sqrt3+\sqrt2}{\sqrt3-\sqrt2}\times\dfrac{\sqrt3+\sqrt2}{\sqrt3+\sqrt2}

So,

\implies y=\dfrac{(\sqrt3+\sqrt2)^2}{(\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}

We know that,

\hookrightarrow (a-b)(a+b)=a^2-b^2

And,

\hookrightarrow (a+b)^2=a^2+2ab+b^2

So,

\implies y=\dfrac{(\sqrt3)^2+2(\sqrt3)(\sqrt2)+(\sqrt2)^2}{(\sqrt3)^2-(\sqrt2)^2}

\implies y=\dfrac{3+2\sqrt6+2}{3-2}

\implies y=\dfrac{5+2\sqrt6}{1}

Hence,

\implies y=5+2\sqrt6

Now, we need to find,

\implies x^2+y^2+xy

So substituting values of x and y,

\implies (5-2\sqrt6)^2+(5+2\sqrt6)^2+(5-2\sqrt6)(5+2\sqrt6)

So,

\implies [(5)^2-2(5)(2\sqrt6)+(2\sqrt6)^2]+[(5)^2+2(5)(2\sqrt6)+(2\sqrt6)^2]+[(5)^2-(2\sqrt6)^2]

\implies 25-20\sqrt6+24+25+20\sqrt6+24+(25-24)

Cancelling 20√6,

\implies 25+24+25+24+(25-24)

\implies 98+1

Hence,

\implies\bf 99

Therefore, the answer is 99.

Answered by saswatidutta09061978
0

Step-by-step explanation:

the answer is 99

hope it helps ^^

please mark my answer as the brainliest ^^

Attachments:
Similar questions