CBSE BOARD XII, asked by SnehaG50, 1 year ago

solve the attachment file

Attachments:

Answers

Answered by Shreya0909
6
\mathbb{\blue{\huge{Hello}}}

see the attachment file
Attachments:
Answered by TheAaisha
2
<b><body bgcolor ="pink"><fontcolor="orange">
\large\mathsf{\underline{Hemisphere}}

\mathsf{diameter, \ d \ = \ 36 \ cm}

\mathsf{radius, \ r \ = \ {\dfrac{diameter}{2}}}

\mathsf{radius, \ r \ = \ {\dfrac{36}{2}}}

\mathsf{radius, \ r \ = \ 18 \ cm}

{\boxed{\mathsf{Volume \ = \ {\dfrac{2}{3}} \pi r^3}}}

\mathsf{Volume \ = \ {\dfrac{2}{3}} × \pi × (18)^3}

\mathsf{Volume \ = \ 2 × \pi × 18 × 18 × 6}

\mathsf{Volume, \ V_H \ = \ 3888 \pi \ cm^3}

\large\mathsf{\underline{Cylinder}}

\mathsf{radius, \ r \ = \ 3 \ cm}

\mathsf{height, \ h \ = \ 6 \ cm}

{\boxed{\sf{Volume \ = \ \pi r^2h}}}

\sf{Volume \ = \ \pi (3)^2 × 6}

\sf{Volume, \ V_C \ = \ 54 \pi \ cm^3}

\sf{A/q}

\sf{V_C × No. \ of \ bottles \ = \ V_H}

\sf{54 \pi × No. \ of \ bottles \ = \ 3888 \pi}

\sf{No. \ of \ bottles \ = \ {\dfrac{3888}{54}}}

{\large{\boxed{\sf{\blue{No. \ of \ bottles \ = \ 72}}}}}
Attachments:
Similar questions