Math, asked by Anonymous, 11 hours ago

Solve the below trigonometric question.

Find the value of tan(π/8).

This is trigonometric functions chapter.

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given trigonometric function is

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) \\

We know,

\rm \: tan2x = \dfrac{2tanx}{1 -  {tan}^{2}x}  \\

 \red{ \sf \: Put \: x \:  =  \: \dfrac{\pi}{8} \: in \: the \: above \: expression, \: we \: get}

\rm \: tan2\bigg(\dfrac{\pi}{8}  \bigg) = \dfrac{2tan\bigg(\dfrac{\pi}{8}  \bigg)}{1 -  {tan}^{2}\bigg(\dfrac{\pi}{8}  \bigg)}  \\

\rm \: tan\bigg(\dfrac{\pi}{4}  \bigg) = \dfrac{2tan\bigg(\dfrac{\pi}{8}  \bigg)}{1 -  {tan}^{2}\bigg(\dfrac{\pi}{8}  \bigg)}  \\

\rm \: 1 = \dfrac{2tan\bigg(\dfrac{\pi}{8}  \bigg)}{1 -  {tan}^{2}\bigg(\dfrac{\pi}{8}  \bigg)}  \\

\rm \: 1 -  {tan}^{2}\bigg(\dfrac{\pi}{8}  \bigg) = 2tan\bigg(\dfrac{\pi}{8}  \bigg) \\

can be rewritten as

\rm \: {tan}^{2}\bigg(\dfrac{\pi}{8}  \bigg)  +  2tan\bigg(\dfrac{\pi}{8}  \bigg) - 1 = 0 \\

Its a quadratic equation in  \rm \: tan\bigg(\dfrac{\pi}{8}  \bigg), so using quadratic formula we have,

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) = \dfrac{ - 2 \:  \pm \:  \sqrt{ {2}^{2}  - 4(1)( - 1)} }{2(1)}  \\

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) = \dfrac{ - 2 \:  \pm \:  \sqrt{4 + 4} }{2}  \\

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) = \dfrac{ - 2 \:  \pm \:  \sqrt{8} }{2}  \\

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) = \dfrac{ - 2 \:  \pm \: 2 \sqrt{2} }{2}  \\

\rm \: tan\bigg(\dfrac{\pi}{8}  \bigg) =  - 1\:  \pm \: \sqrt{2}  \\

As,

\rm \: 0 < \bigg(\dfrac{\pi}{8}  \bigg) < \bigg(\dfrac{\pi}{2}  \bigg) \\

\bf\implies \:tan\bigg(\dfrac{\pi}{8}  \bigg) > 0 \\

\bf\implies \:tan\bigg(\dfrac{\pi}{8}  \bigg) =  \sqrt{2} - 1 \\  \\

\rule{190pt}{2pt} \\

Additional Information :-

\begin{gathered} { \boxed{ \begin{array}{c} \underline{\underline{ \color{orange} \text{Additional \: lnformation}}} \\&  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Answered by MysticSohamS
0

Step-by-step explanation:

to \: find :  \\ tan( \frac{\pi}{8} ) = tan(22.5) \\  \\ we \: know \: that \\  \frac{45}{2}  = 22.5 \\  \\ taking \: tangent \: function \: on \\  \: both \: sides \\  \\  \tan( \frac{45}{2} )  =  \tan(22.5)  \\  \\ we \: know \: that \\ tan( \frac{x}{2} ) =  \sqrt{ \frac{1 - cos \: x}{1 + cos \: x} }  = cosec(x) - cot(x) \\  \\  = cosec(45) - cot(45) \\  \\tan(22.5) = tan( \frac{\pi}{ 8 })   =  \sqrt{2}  - 1

Similar questions