solve the Bernoulli equation dy/dx+ytanx=y^3secx
Answers
Answered by
2
Step-by-step explanation:
Solve
dydx+ytanx=y3secx
My Attempt:
dydx+ytanx=y3secx
Dividing both sides y3,
y−3dydx+y−2tanx=secx
Put y−2=z
(−2)y−2dydx=dzdx
y−3dydx=−12dzdx
Then
−12dzdx+z.tanx=secx
−dzdx+(2tanx)z=2secx
y′y3+tanxy2=1cosx
z′−2ztanx=−2cosx
The integrating factor would be now:
e−2∫tanxdx=eln(cos2x)+C
So multiply both sides by cos2x
(zcos2x)′=−2cosx⇒zcos2x=−2sinx+C
y=cos2x−2sinx+C−−−−−−−−−−−√
Similar questions