Math, asked by premsinai, 4 days ago

solve the differential equation
√1+x^2dx+√1+y^2dy=0

Answers

Answered by dcmallik1396
0

Step-by-step explanation:

 \sqrt{1 +  {x}^{2} } dx +  \sqrt{1 +  {y}^{2} } dy = 0

 \sqrt{1 +  {x}^{2} } dx =  -  \sqrt{1 +  {y}^{2} } dy

integrating \: both \: sides \\  \int \sqrt{ {x}^{2} +  {1}^{2}  } dx =  -  \int \sqrt{ {y}^{2}  +  {1}^{2} } dy

We know that

 \int \sqrt{ {x}^{2}  +  {a}^{2} } dx =  \frac{x}{2}  \sqrt{ {x}^{2} +  {a}^{2}  }  +  \frac{ {a}^{2} }{2} ln |x +  \sqrt{ {x}^{2}  +  {a}^{2} } |  + c

So Applying the above formula

 \frac{x}{2}  \sqrt{ {x}^{2} +  {1}^{2}  }  +  \frac{ {1}^{2} }{2} ln |x +  \sqrt{ {x}^{2}  +  {1}^{2} } |  =  \frac{y}{2}  \sqrt{ {y}^{2} +  {1}^{2}  }  +  \frac{ {1}^{2} }{2} ln |x +  \sqrt{ {x}^{2} +  {1}^{2}  } |

Similar questions