Math, asked by bibekkumar1473, 4 months ago

Solve the differential equation: (1+y)²dy=(tan^-1 x-x)dx

Answers

Answered by srirammeghana
1

Answer:

1+y

2

)dx=(tan

−1

y−x)dy

dy

dx

=

1+y

2

tan

−1

y

1+y

2

x

dy

dx

+

1+y

2

x

=

1+y

2

tan

−1

y

Hence

IF=e

1+y

2

1

.dy

=e

tan

−1

y

Hence the above differential equation changes to

e

tan

−1

y

.

dy

dx

+

1+y

2

xe

tan

−1

y

=

1+y

2

e

tan

−1

y

tan

−1

y

e

tan

−1

y

.dx+

1+y

2

xe

tan

−1

y

dy=

1+y

2

e

tan

−1

y

tan

−1

y

dy

d(e

tan

−1

y

.x)=d(e

tan

−1

y

)

Integrating both sides give us

e

tan

−1

y

.x=e

tan

−1

y

+C

Similar questions