Math, asked by arvindkumar841238, 1 year ago

solve the differential equation

Attachments:

Answers

Answered by Anonymous
17

Question:

(1 +  {e}^{ \frac{x}{y} } )dx +  {e}^{ \frac{x}{y} } (1 -  \frac{x}{y} )dy = 0

Solution:

The given equation is:

(1 +  {e}^{ \frac{x}{y} } )dx +  {e}^{ \frac{x}{y} } (1 -  \frac{x}{y} )dy = 0 \\  \\  =  >  \frac{dx}{dy}  =  -  \frac{ {e}^{ \frac{x}{y} (1 -  \frac{x}{y} )} }{1 +  {e}^{ \frac{x}{y} } }  \\  \\  =  >  \frac{dx}{dy}  =  \frac{ (\frac{x}{y}  - 1) {e }^{ \frac{x}{y} } }{1 +  {e}^{ \frac{x}{y} } } ...............(1).

Here

f(x,y) =  \frac{( \frac{x}{y } - 1) {e}^{ \frac{x}{y} }  }{1 +  {e}^{ \frac{x}{y} } }  \\  \\ f(λx,λy) =  \frac{( \frac{λx}{λy} - 1) {e}^{ \frac{λx}{λy} }  }{1 +  {e}^{ \frac{λx}{λy} } }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ (\frac{x}{y}  - 1) {e}^{ \frac{x}{y} } }{1 +  {e}^{ \frac{x}{y} } }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   = λ ^{0} f(x,y)

Thus f(x,y) is homogeneous function of degree zero.

To solve:

Put x= vy

so that

 \frac{dx}{dy}  = v + y \frac{dv}{dy}

(1) becomes.

v + y \frac{dv}{dy}  =   \frac{ (\frac{vy}{y} - 1) {e}^{ \frac{vy}{y} }  }{1 +  {e}^{ \frac{x}{y} } }  \\  \\  =  > v + y \frac{dv}{dy}  =  \frac{(v - 1) {e}^{v} }{1 +  {e}^{v} }  \\  \\  =  > y \frac{dv}{dy}  =  \frac{(v - 1) {e}^{v} }{1 +  {e}^{v} }  - v \\  \\  =  > y \frac{dv}{dy}  =  \frac{v {e}^{v}  -  {e}^{v}  - v - v {e}^{v} }{1 +  {e}^{v} }  \\  \\  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  -  \frac{ {e}^{v}  + v}{1 +  {e}^{v} }  \\  \\   =  >  \frac{1 +  {e}^{v} }{v +  {e}^{v} } dv =   - \frac{dy}{y}

Integrating

∫ \frac{1 +  {e}^{ \frac{x}{y} } }{v +  {e}^{v} } dv =  - ∫ \frac{1}{y} dy + log |c|

Put

v +  {e}^{v}  = t

so that

( 1 +  {e}^{v} )dv = dt

∫ \frac{dt}{t}  =  - ∫ \frac{1}{y} dy + log |c|  \\  \\  =  > log |t|  =  - log |y|  + log |c|  \\  \\  =  > log |t|  + log |y|  = log |c|  \\  \\ =  >  log |ty|  = log |c|  \\  \\  =  > ty = c =  > (v +  {e}^{ \frac{x}{y} }) y = c \\  \\  =  >  ( \frac{x}{y}  +  {e}^{ \frac{x}{y} } )y = c \\  \\  =  > x + y {e}^{ \frac{x}{y} }  = c

Which is required solution.

Similar questions