Math, asked by Nikkkki, 1 year ago

Solve the differential equation.
2ax+x^2dy/dx=a^2+2ax

Answers

Answered by MaheswariS
10

\textbf{Given:}

(2ax+x^2)\frac{dy}{dx}=a^2+2ax

\textbf{This D.E can be written as}

\frac{dy}{dx}=\frac{a^2+2ax}{2ax+x^2}

\frac{dy}{dx}=\frac{a^2+2ax}{x(x+2a)}........(1)

\text{First we resolve the R.H.S into partial fractions}

\frac{a^2+2ax}{x(x+2a)}=\frac{A}{x}+\frac{B}{x+2a}

\frac{a^2+2ax}{x(x+2a)}=\frac{A(x+2a)+Bx}{x(x+2a)}

\implies\;a^2+2ax=A(x+2a)+Bx

\text{Put x=0}

a^2=A(2a)

\implies\,A=\frac{a}{2}

\text{Put x=-2a}

-3a^2=B(-2a)

\implies\,B=\frac{3a}{2}

\therefore\frac{a^2+2ax}{x(x+2a)}=(\frac{a}{2})\frac{1}{x}+(\frac{3a}{2})\frac{1}{x+2a}

\text{Now (1) becomes}

\frac{dy}{dx}=(\frac{a}{2})\frac{1}{x}+(\frac{3a}{2})\frac{1}{x+2a}

dy=(\frac{a}{2})\frac{1}{x}+(\frac{3a}{2})\frac{1}{x+2a}\;dx

\text{Integrating on bothsides, we get}

\int\;dy=\frac{a}{2}\int\;\frac{1}{x}+\frac{3a}{2}\int\;\frac{1}{x+2a}\;dx

y=\frac{a}{2}log|x|+\frac{3a}{2}\;log|x+2a|+c \text{ which is the required solution}

Answered by ajeetyadav771808
0

Answer:

Step-by-step explanation:

Hi

Similar questions