Math, asked by devapriyarnair88, 5 months ago

solve the differential equation (3xy+y^2)dx=(x^2+xy)dy​

Answers

Answered by PharohX
2

Step-by-step explanation:

(3xy +  {y}^{2} )dx = ( {x}^{2}  + xy)dy \\  \\ \frac{dy}{dx}  =  \frac{3xy +  {y}^{2} }{ {x}^{2}  + xy}  \\  \\ it \:  \: is \: the \:  \: homogenious \:  \: differential \:  \: equation \\ maximum \:  \: power \:  \: 2 \\  \\ let \:  \: y \:  = vx \\  \frac{dy}{dx}  = v + x \frac{dv}{dx}  \\  \\ v + x \frac{dv}{dx}  =  \frac{3x(vx) + (vx) {}^{2} }{ {x}^{2}  + x(vx)}  \\  \\ v + x \frac{dv}{dx}  =  \frac{ {x}^{2}(3v +  {v}^{2})  }{ {x}^{2} (1 + v)}  \\  \\ v +  \frac{dv}{dx}  =  \frac{3v +  {v}^{2} }{1 + v}  \\  \\  \frac{dv}{dx}  =  \frac{3v +  {v}^{2} }{1 + v}  - v \\  \\  \frac{dv}{dx}  =  \frac{3v +  {v}^{2} - v -  {v}^{2}  }{1 + v}  \\  \\  \frac{dv}{dx}  =(  \frac{2v}{1 +v }  )\\  \\(  \frac{1 + v}{v} ) dv = dx \\ \\  \int( \frac{1}{v}  + 1)dv =\int( dx )\\  \\  log(v)  + v = x + c \\  \\  log( \frac{y}{x} )  +  \frac{y}{x}  = x + c

Required ans....

Thank you.....

Similar questions