solve the differential equation cosxdy/dx+4ysinx=4√y secx
Answers
Answered by
0
Answer:
cosx.
dx
dy
+ysinx=sec
2
x
dx
dy
+ytanx=sec
3
x
Hence the integrating factor is
IF=e
∫tanx.dx
=e
ln∣secx∣
=secx
secx
dx
dy
+ysecxtanx=sec
4
x
secxdy+ysecxtanxdx=sec
4
xdx
∫d(ysecx)=∫sec
4
xdx
ysecx=∫sec
2
x(1+tan
2
x)dx
ysecx=∫sec
2
x+∫sec
2
xtan
2
xdx
ysecx=tanx+∫sec
2
xtan
2
xdx
Let tanx=t
sec
2
xdx=dt
Hence
ysecx=tanx+∫t
2
dx
ysecx=tanx+
3
t
3
+C
ysecx=tanx+
3
tan
3
x
+C
Answered by
0
this is the answer for this question
Attachments:
Similar questions