Math, asked by unnatilondhe1119, 5 hours ago

solve the differential equation cosxdy/dx+4ysinx=4√y secx​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \cos(x)  \frac{dy}{dx}  + 4y \sin(x)  = 4 \sqrt{y} \sec(x)  \\

  \implies \frac{dy}{dx}  + 4y \tan(x)  = 4 \sqrt{y} \sec^{2} (x)  \\

  \implies \frac{1}{ \sqrt{y} }  \frac{dy}{dx}  + 4 \sqrt{y} \tan(x)  = 4 \sec^{2} (x)  \\

  Let \:  \: 2 \sqrt{y}  = v \\  \implies \frac{1}{ \sqrt{y} }  \frac{dy}{dx} =  \frac{dv}{dx}

Now,

  \implies \frac{dv}{dx}  +2v \tan(x)  = 4 \sec^{2} (x)  \\

I.F =  {e}^{ \int2 \tan(x) dx}  =  {e}^{2  \ln( \sec(x) ) }  =  {e}^{ \ ln( \sec^{2}(x) ) } =  \sec^{2}(x)\\

Required solution

v .\sec^{2}(x) =  \int4\sec^{2}(x) \sec^{2}(x)dx  \\

 \implies \: v .\sec^{2}(x) = 4 \int(1 + \tan^{2}(x)) \sec^{2}(x)dx  \\

On RHS, we put \tan(x) = t\:\: \implies \sec^{2}dx=dt\\

so,

 \implies \: v .\sec^{2}(x) = 4 \int(1 + t^{2}) dt  \\

 \implies \: v .\sec^{2}(x) = 4t + 4\frac{ t^{3}}{3} + C  \\

 \implies \: v .\sec^{2}(x) = 4t + \frac{4 }{3}t^{3}+ C  \\

 \implies \: v .\sec^{2}(x) = 4 \tan(x) + \frac{4 }{3} \tan^{3}(x)+ C  \\

 \implies \: 2 \sqrt{y}  \sec^{2}(x) = 4 \tan(x) + \frac{4 }{3} \tan^{3}(x)+ C  \\

 \implies \:  \sqrt{y}  \sec^{2}(x) = 2\tan(x) + \frac{2 }{3} \tan^{3}(x)+ \frac{ C  }{2}\\

 \implies \:  \sqrt{y}  \sec^{2}(x) = 2\tan(x) + \frac{2 }{3} \tan^{3}(x)+  K \\

Answered by priyacnat
0

Answer: The solution of the given differential equation cos x dy/dx + 4y sin x = 4y sec x be,

1/4 log y = tan x - log sec x + C.

Given the differential equation

cos x dy/dx + 4y sin x = 4y sec x

On simplifying the differential equation

cos x dy/dx = 4y sec x - 4y sin x

cos x dy/dx = 4y (sec x - sin x)

On cross-multiplying

1/4y dy = (sec x - sin x)/cos x dx

Now, on Integrating both the sides

∫1/4y dy = ∫(sec² x - tan x) dx

1/4∫1/y dy = ∫sec² x - ∫tan x dx

1/4 log y = tan x - log sec x + C

The solution of the given differential equation cos x dy/dx + 4y sin x = 4y sec x be,

1/4 log y = tan x - log sec x + C.

To conclude in one sentence, the solution of the given differential equation cos x dy/dx + 4y sin x = 4y sec x be,

1/4 log y = tan x - log sec x + C.

To know more about Differential Equations, click the link below

https://brainly.in/question/54434060

To know more about Variable Separable, click the link below

https://brainly.in/question/54176504

#SPJ2

Similar questions