Math, asked by gayathridevimj, 2 months ago

solve the differential equation.
dy/dx = xy / (√ x^2 -4 ).



Answers

Answered by Bhanu11T
0

Answer:

-4xy/(x^2-4)^2

Step-by-step explanation:

dy/dx=xy/root x^2-4

1/y. dy/dx= x/root x^2-4

Solve it you will get your answer

if I do any mistake then please forgive me becoz I'm in 11th now..

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Differential equation is,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{xy}{ \sqrt{ {x}^{2} - 4 }}

To solve this Differential equation, we use method of separated the variable.

The given Differential equation can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{x}{ \sqrt{ {x}^{2} - 4 }} \times y

\rm :\longmapsto\:\dfrac{dy}{y} = \dfrac{x}{ \sqrt{ {x}^{2} - 4 }}dx

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dy}{y} =\displaystyle\int\tt  \dfrac{x}{ \sqrt{ {x}^{2} - 4 }}dx

We know,

\boxed{ \sf{ \: \displaystyle\int\tt  \frac{1}{x}dx = logx + c}}

So, using this

\rm :\longmapsto\:logy =\dfrac{1}{2} \displaystyle\int\tt  \dfrac{2x}{ \sqrt{ {x}^{2} - 4 }}dx

We know,

\boxed{ \sf{ \: \displaystyle\int\tt  \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}}

and

\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2}  - 4) = 2x

So,

\rm :\longmapsto\:logy =\dfrac{1}{2} \times  2 \sqrt{ {x}^{2} - 4 }  + c

\rm :\longmapsto\:logy = \sqrt{ {x}^{2} - 4 }  + c

Let's solve one more example of same type :-

Solve the differential equation :-

\rm :\longmapsto\:x \sqrt{1 +  {y}^{2} } dx = y \sqrt{1 +  {x}^{2} }dx

Solution :-

By using the method of variable separation, we get

\rm :\longmapsto\:\dfrac{x}{ \sqrt{1 +  {x}^{2} } } dx = \dfrac{y}{ \sqrt{1 +  {y}^{2} } } dy

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{x}{ \sqrt{1 +  {x}^{2} } } dx =\displaystyle\int\tt  \dfrac{y}{ \sqrt{1 +  {y}^{2} } } dy

Now, multiply by 2 on both sides,

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{2x}{ \sqrt{1 +  {x}^{2} } } dx =\displaystyle\int\tt  \dfrac{2y}{ \sqrt{1 +  {y}^{2} } } dy

We know,

\boxed{ \sf{ \: \displaystyle\int\tt  \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}}

and

\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2}   + 1) = 2x

So, using this, we have

\rm :\longmapsto\:2 \sqrt{ {x}^{2} + 1 }  = 2 \sqrt{ {y}^{2}  + 1}  + 2c

\rm :\longmapsto\:\sqrt{ {x}^{2} + 1 }  = \sqrt{ {y}^{2}  + 1}  + c

Let's solve one more problem now!!

Solve the differential equation :-

\rm :\longmapsto\:tany \:  {sec}^{2}x \: dx \:  =  \: tanx \:  {sec}^{2} y \: dy

Solution :-

By method of variable separation, we have

\rm :\longmapsto\:\dfrac{ {sec}^{2}x }{tanx}dx  = \dfrac{ {sec}^{2} y}{tany} dy

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {sec}^{2}x }{tanx}dx  =\displaystyle\int\tt  \dfrac{ {sec}^{2} y}{tany} dy

We know,

\boxed{ \sf{ \: \dfrac{f'(x)}{f(x)}dx = logf(x) + c}}

and

\boxed{ \sf{ \: \dfrac{d}{dx}tanx =  {sec}^{2} x}}

So, using this we get

\rm :\longmapsto\:log \: tanx =log \: tany  + logc

\rm :\longmapsto\:log \: tanx =log( \: c \: tany  )

\bf\implies \:tanx = c \: tany

Similar questions