Math, asked by royb83013, 11 months ago

Solve the differential equation log(dy/dx)=ax+by​

Answers

Answered by riyagupta21march
5

Step-by-step explanation:

plaease check the image

then solve the integration

Attachments:
Answered by jitendra420156
13

Therefore the required solution is

\frac{e^{ax}}{a}+ \frac{e^{-by}}{b}+C=0

Step-by-step explanation:

Formula:

\int e^{mx}dx=\frac{e^{mx}}{m} +C

Given that,

log(\frac{dy}{dx} )=ax+by

\Rightarrow \frac{dy}{dx} =e^{ax+by}

\Rightarrow \frac{dy}{dx} = e^{ax}.e^{by}

\Rightarrow \frac{dy}{e^{by}} =e^{ax}{dx}

Integrating both sides,

\Rightarrow \int\frac{dy}{e^{by}} =\int e^{ax}{dx}

\Rightarrow \int e^{-by}dy =\int e^{ax}{dx}

\Rightarrow \frac{e^{-by}}{-b} =\frac{e^{ax}}{a} +C      [ where c is arbitrary constant]

\Rightarrow \frac{e^{ax}}{a}+ \frac{e^{-by}}{b}+C=0

Therefore the required solution is

\frac{e^{ax}}{a}+ \frac{e^{-by}}{b}+C=0

Similar questions